3.7 ASTER Scenario #### 3.7.1 ASTER Scenario Description This scenario shows how the ECS supports the ASTER mission. ECS provides a mechanism for ECS Users to submit Data Acquisition Requests (DARs). ECS notifies the ECS User when that DAR has been fulfilled. ECS receives ASTER data via tape, from ASTER GDS. These tapes contain L1A and L1B data. This data is provided to ECS regardless of whether or not ECS Users had previously submitted DARs. ECS provides support for users to request processing of the L1A and L1B data to higher information levels, via requests for On-Demand Processing. A request for On-Demand Processing may require a sequence of algorithms to be run on the specified data. Granules produced by On-Demand Processing are not permanently archived. ECS supports the insertion of ASTER Expedited Data Set (EDS) from EOS Data and Operations System (EDOS) and its immediate availability to selected ASTER Scientists. ECS provides support for interoperability with ASTER GDS so that an EOSDIS user or an ASTER GDS user is able to view the data holdings and order production data of the other system. The following system functionality is exercised in this scenario: - Java DAR Tool usage for DAR submittal (Thread A) - Data Tape Ingest (Threads B & I) - Backward Chaining (Thread C) - Science User metadata update (Thread D) - On-Demand Production (Thread E, F & G) - Simplified ASTER Expedited Data Support (Thread H) - Routine Processing Planning for Start/Stop and Insertion time (Threads I & J) - Spatial Query/Padding (Thread K) - View EDC data holdings and order production data (Threads L & M) - View ASTER GDS data holdings and order production data (Thread N) - Support of attached standing on-demand processing orders to a DAR (Thread O) Figure 3.7.1-1 is a dataflow diagram that illustrates the relationships between the data types and PGEs used in the ASTER scenario. Figure 3.7.1-1. ASTER Scenario PGE/Data Relationships Diagram #### 3.7.2 ASTER Scenario Preconditions The following ESDTs have been inserted into the ECS: - AST_ANC (ASTER Ancillary data) - AST_EXP (ASTER Expedited L0 data) - AST_L1A (ASTER L1A data) - AST_L1B (ASTER L1B data) - AST_04 (L2 Brightness Temperature) - AST_05 (L2 Surface Emissivity) - AST_08 (L2 Surface Temperature) - AST_09T (L2 Surface Radiance) - ASTER14DEM (ASTER DEM Product) - GDAS0ZFH (NCEP provided ancillary data) - PH (Product History) - PGEEXE (PGE Execution Granule) The following ASTER PGEs have passed SSI&T and have been inserted into the ECS: - ACT -- Atmospheric Correction TIR (Thermal Infrared) - ETS -- Emissivity/Temperature Separation - BTS -- Brightness Temperature at Sensor Ancillary granules (AST_ANC and GDAS0ZFH) have been inserted into the ECS. The Science User must be a registered ECS User whose profile reflects a user authorized to submit a DAR. #### 3.7.3 ASTER Scenario Partitions The ASTER scenario has been partitioned into the following threads: - **ASTER DAR Submission** (Thread A) This thread shows the usage of the CLS Java DAR Tool, and its interaction with GDS and other ECS components (section 3.7.4). - **ASTER GDS Tape Insertion** (Thread B) This thread shows how the ECS inserts data provided by GDS on DTF-2 tape (see section 3.7.5). - **ASTER Backward Chaining** (Thread C) This thread shows how the system supports requests from ECS users to produce data requiring a sequence of algorithms to be run (see section 3.7.6). - **ASTER QA Metadata Update** (Thread D) This thread shows how the ECS supports updating the QA metadata of a specified granule (see section 3.7.7). - **ASTER On-Demand High Level Production** (Thread E) This thread shows how the ECS supports users request for On-Demand production (see section 3.7.8). - **ASTER On-Demand Non-Standard L1B Production Thread** (Thread F) This thread shows how the ECS supports users request for On-Demand production of non-standard L1B data products (see section 3.7.9). - **ASTER On-Demand DEM Production Thread** (Thread G) -- This thread shows how the ECS supports users request for On-Demand production of the DEM data product (see section 3.7.10). - **ASTER Simplified Expedited Data Support** (Thread H) This thread shows how the ECS supports a simplified version of Expedited data support (see section 3.7.11). - **ASTER Routine Processing Planning Data Start/Stop Time** (Thread I) This thread shows how planning is done to create data processing jobs for ASTER routine processing (see section 3.7.12). - **ASTER Routine Processing Planning Insertion Time** (Thread J) This thread shows how to perform ASTER BTS (Brightness Temperature at Sensor) PGEs (see section 3.7.13). - **ASTER Spatial Query** (Thread K) -- This thread illustrates how to perform ASTER processing for a predefined geographic area. This area can be expanded (padded) by a predefined number of kilometers. (See section 3.7.14). - **ASTER View ECS Data Holdings** (Thread L) This thread shows how an ASTER GDS user can obtain information about the location and other attributes of specified data sets, and browse specified data sets. (See section 3.7.15). - **ASTER Price & Order Data** (Thread M) This thread shows how an ASTER GDS user can obtain a price estimate for ECS products, place an order for ECS products stored at any DAAC and obtain the status of a previously placed order. (See section 3.7.16). - **User View And Order ASTER GDS Data** (Thread N) This thread shows how an ECS user can obtain information on the attributes of specified data sets, browse specified data sets and place an order for ASTER products stored at GDS. (See section 3.7.17). - **ASTER Attached DPRs (Standing Orders)** (Thread O) -- This thread shows how the ECS supports user requests for attaching standing, on-demand processing orders to a Data Acquisition Request (DAR). The processing and distribution of the on-demand requests that result from these orders is identical to standard on-demand production discussed in Section 3.7.8. This new capability is an extension of that existing on-demand capability. (See section 3.7.18). #### 3.7.4 ASTER DAR Submission Thread This thread shows the usage of the CLS Java DAR Tool, and its interaction with GDS and other ECS components. ### 3.7.4.1 ASTER DAR Submission Thread Interaction Diagram - Domain View Figure 3.7.4.1-1 depicts the ASTER DAR Submission Thread Interaction - Domain View. Figure 3.7.4.1-1. ASTER DAR Submission Interaction Diagram #### 3.7.4.2 DAR Submission Thread Interaction Table - Domain View Table 3.7.4.2-1 provides the Interaction - Domain View: ASTER DAR Submission. Table 3.7.4.2-1. Interaction Table - Domain View: ASTER DAR Submission (1 of 2) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precon
ditions | Description | |------|-----------------|------------------------------|------------------------------|----------------|---------------------------|--| | A.1 | Web
Browser | Science
User | Web
Server | None | None | A Science User connects to the Java DAR Tool Server. | | A.2 | Http
daemon | Web
Server | CLS
(Java
DAR
Tool) | None | None | The HyperText Transfer Protocol (http) daemon establishes a connection for the client. | | A.3 | Login
Screen | CLS
(Java
DAR
Tool) | Science
User | None | None | The Java DAR tool provides a login screen for the Science User. | Table 3.7.4.2-1. Interaction Table - Domain View: ASTER DAR Submission (2 of 2) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precon | Description | |------|---------------------------------|------------------------------|---|----------------|----------------|--| | | | Ollerit | Tiovidei | 133003 | ditions | | | A.4 | Login
Informat
ion | Science
User | CLS
(Java
DAR
Tool) | None | None | The Science User supplies login information to the Data Acquisition Request (DAR) Tool. | | A.5 | Login
Info | CLS
(Java
DAR
Tool) | CLS
(JESS) | None | None | The Java DAR Tool relays login information to the Java Earth Science Server (JESS). | | A.6 | Profile
Request | CLS
(Java
DAR
Tool) | CLS
(JESS) | None | None | Once the user is authenticated, the Java DAR Tool requests the user's profile. | | A.7 | Profile
Request
(cont'd) | CLS
(JESS) | CSS
(MOJO
Gateway) | None | None | The Profile Request is translated into the appropriate format and sent to the Mission Oriented middleware of JEST Objects (MOJO). | | A.8 | Profile
Request
(cont'd) | CSS
(MOJO) | MSS
(User
Registrati
on
Server) | None | None | The Message Oriented middleware of JEST Objects formats and submits request to the System Management Subsystem (MSS) User Registration Server. | | A.9 | DAR
Tool | CLS
(Java
DAR
Tool) | Science
User | None | None | The Java DAR Tool is instantiated on the Science User's platform. | | A.10 | DAR
Paramet
ers | Science
User | CLS
(Java
DAR
Tool) | None | None | The User creates or modifies a request and submits it. | | A.11 | Submit
DAR
Paramet
ers | CLS
(Java
DAR
Tool) | CLS
(JESS) | None | None | The Java DAR Tool relays parameters to the Java Earth Science Server. | | A.12 | Send
DAR
Paramet
ers | CLS
(JESS) | CSS
(MOJO
Gateway) | None | None | Parameters are passed to the Mission Oriented middleware of JEST Objects for translation. | | A.13 | Submit
DAR | CSS
(MOJO
Gateway) | CSS
(ASTER
DAR
Gateway) | None | None | A DAR submission is made to the [ASTER] Ground Data System (GDS) Application Programming Interface (API) on behalf of the ECS user. | | A.14 | Subscri
ption | CSS
(MOJO
Gateway) |
CSS
(SBSRV) | None | None | A subscription is entered for this submission. | # 3.7.4.3 ASTER DAR Submission Thread Component Interaction Table Table 3.7.4.3-1 provides the Component Interaction: ASTER DAR Submission. Table 3.7.4.3-1. Component Interaction Table: ASTER DAR Submission (1 of 2) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |--------|--|---------------------------------|---------------------------------|--------------------|---| | A.1.1 | Startup
Java DAR
Tool | Science
User | World Wide
Web
Server | НМІ | From the browser, a User starts the Java DAR Tool. | | A.2.1 | Web
Server
downloads
Java DAR
Tool | Web
Server | EcClWbJdt
(JAVA
DAR Tool) | CCS
Middleware | The Java DAR Tool starts on client platform. | | A.3.1 | Login
Screen
Instantiated | EcClWbJdt
(Java DAR
Tool) | Science
User | CCS
Middleware | A Login Screen is drawn on the user's screen. | | A.4.1 | Login
Information | Science
User | EcClWbJdt
(Java DAR
Tool) | НМІ | The user sends the login information. | | A.5.1 | Login
Information | EcClWbJdt
(Java DAR
Tool) | JESS | Socket | Log in information is sent from the Java DAR Tool to the Java Earth Science Server. | | A.6.1 | Profile
Request | EcClWbJdt
(Java DAR
Tool) | JESS | Socket | Once the user is authenticated, the user profile request is passed from the Java DAR Tool to the Java Earth Science Server. | | A.7.1 | Profile
Request | JESS | EcCsMojo
Gateway | Socket | A profile request is formatted and passed from the Java Earth Science Server to the Message Oriented middleware of JEST Objects. | | A.8.1 | Profile
Request | EcCsMojo
Gateway | EcMsAcRe
gUserSrvr | CCS
Middleware | The Mission Oriented middleware of JEST Objects sends the profile request to the System Management Subsystem's User Profile Server. | | A.9.1 | DAR Tool
downloade
d | EcClWbJdt | Science
User | CCS
Middleware | The Java DAR Tool screen(s) are downloaded to the user's machine. | | A.10.1 | DAR
Parameters | Science
User | EcClWbJdt
(Java DAR
Tool) | НМІ | DAR Parameters are entered into the Java DAR Tool. | | A.11.1 | Submit
DAR
Parameters | EcClWbJdt
(Java DAR
Tool) | JESS | Socket | DAR parameters are passed from the Java DAR Tool to the Java Earth Science Server. | Table 3.7.4.3-1. Component Interaction Table: ASTER DAR Submission (2 of 2) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |--------|------------------------|---------------------|-----------------------|--------------------|---| | A.12.1 | Send DAR
Parameters | JESS | EcCsMojo
Gateway | Socket | DAR parameters are relayed from the Java Earth Science Server to the Mission Oriented middleware of JEST Objects. | | A.13.1 | Submit
DAR | EcCsMojo
Gateway | EcGwDAR
Server | CCS
Middleware | DAR Parameters are relayed from the Mission Oriented middleware of JEST Objects to the ASTER DAR Gateway. | | A.14.1 | Subscriptio n | EcCsMojo
Gateway | EcSbSubS
erver | CCS
Middleware | Entering a subscription so the user knows when the request is filled. | ### 3.7.5 ASTER GDS Tape Insertion Thread This thread shows how the ECS inserts data provided by GDS on DTF tape. This data is either AST_L1A or AST_L1B data. #### 3.7.5.1 ASTER GDS Tape Insertion Thread Interaction Diagram - Domain View Figure 3.7.5.1-1 depicts the ASTER GDS Tape Insertion Interaction. Figure 3.7.5.1-1. ASTER GDS Tape Insertion Interaction Diagram # 3.7.5.2 ASTER GDS Tape Insertion Thread Interaction Table - Domain View Table 3.7.5.2-1 provides the Interaction - Domain View: ASTER GDS Tape Insertion. Table 3.7.5.2-1. Interaction Table - Domain View: ASTER GDS Tape Insertion (1 of 2) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondit | Description | |------|---|---|-----------------------|-------------------------|---|--| | B.1 | GDS Ships
DTF
Tape(s) | ASTER
GDS | DAAC
Ops | None | ions
None | The ASTER Ground Data System uses commercial shipping vendor, sends DTF tapes containing AST_L1A or AST_L1B data. Tape contains data takes that are both due to ECS DARs as well as data that was not requested via ECS. | | B.2 | Load
Media | DAAC
Ingest/Distr
ibution
Technician | DSS
(STMGT) | None | DTF Tape
is loaded
into
Device | A DAAC Ingest/Distribution Technician loads the DTF tape using the Storage Management Graphical User Interface (GUI). | | B.3 | Ingest from
DTF | DAAC
Ingest/Distr
ibution
Technician | INS
(INGST) | None | Get Media
Id from
STMGT
GUI | A DAAC Ingest/Distribution Technician loads the DTF tape and, using an Ingest GUI, prepares to read the tape. | | B.4 | Create
Staging
Disk &
Read DTF
Tape | INS
(INGST) | DSS
(SDSRV) | None | None | Ingest interfaces with the Data
Server Subsystem to create an
Ingest staging disk area and
reads the DTF tape into this
staging disk area. | | B.5 | Request
Data Insert | INS
(INGST) | DSS
(SDSRV) | 2
granules
@ 5 MB | AST_L1A
AST_L1B
ESDTs | Ingest inserts the new ASTER granules into the Science Data Server. | | B.6 | Trigger
Event | DSS
(SDSRV) | CSS
(SBSRV) | None | None | Upon successful completion of insertion of each AST_L1A or AST_L1B granule, the AST_L1A:Insert or AST_L1B:Insert event is triggered, with the qualifiers including all the XARids attached to that data. | | B.7 | Acquire
Request | CSS
(SBSRV) | DSS
(SDSRV) | None | None | The Subscription Server sends an "acquire" request to the Science Data Server for data needed for a subscription. | Table 3.7.5.2-1. Interaction Table - Domain View: ASTER GDS Tape Insertion (2 of 2) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondit
ions | Description | |------|----------------------|---------------------|-----------------------|----------------|---------------------------|--| | B.8 | Send
Notification | CSS
(SBSRV) | Science
User | None | None | Send notification to the Science User that AST_L1A or AST_L1B granules for their DAR have been inserted. The notification message includes the Universal Reference (UR) of the granule, as well as the DAR IDs that have been matched. | # 3.7.5.3 ASTER GDS Tape Insertion Thread Component Interaction Table Table 3.7.5.3-1 provides the Component Interaction: ASTER GDS Tape Insertion. Table 3.7.5.3-1. Component Interaction Table: ASTER GDS Tape Insertion (1 of 4) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|-----------------------|------------------------------|-----------------------|--------------------|--| | B.1.1 | Startup
STMGT GUI | DAAC
Ingest
Technician | EcDsStmgt
GUI | Command | A DAAC Ingest Technician invokes the Storage Management Graphical User Interface (GUI) using the start script. The DAAC Ingest Technician selects the Resource Mgmt Tab on the Storage Management GUI. | | B.1.2 | Select
Media Type | DAAC
Ingest
Technician | EcDsStmgt
GUI | GUI | A DAAC Ingest Technician selects DTF from the Media Type Pulldown menu. The DAAC Ingest Technician clicks the Server Id and selects the Manage Hardware Button. | | B.1.3 | Select Load
Media | DAAC
Ingest
Technician | EcDsStmgt
GUI | GUI | A DAAC Ingest Technician clicks the Drive
Name and selects Load Media from the
Media Operations pulldown menu. | | B.1.4 | Enter Media
ID | DAAC
Ingest
Technician | EcDsStmgt
GUI | GUI | A DAAC Ingest Technician fills in the Media Id on the Load Media window. The DAAC Ingest Technician also selects the OK button. | | B.2.1 | Startup
Ingest GUI | DAAC
Ingest
Technician | EcInGUI | Command | A DAAC Ingest Technician invokes the Ingest GUI using the start script. The DAAC Ingest Technician selects the Media Ingest tab on the Ingest GUI. | Table 3.7.5.3-1. Component Interaction Table: ASTER GDS Tape Insertion (2 of 4) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|-------------------------------|------------------------------|------------------------------------|--------------------|--| | B.2.2 | Select
Ingest
Device | DAAC
Ingest
Technician | EcInGUI | GUI | A DAAC Ingest Technician selects the media device (i.e., DTF tape) to read data from and selects the data provider. The DAAC Ingest Technician also selects
the location of the DDR as embedded in the media and enters the DDR name. The Technician gets the Media Id from the Storage Management GUI. | | B.3.1 | Allocate
Media
Resource | EcInGUI | EcDsStReq
uestManage
rServer | CCS
Middleware | Ingest now creates the Resource Manager for the DTF tape via a Resource Manager Factory. The correct DTF resource is determined from configuration information within the resource factory. | | B.3.2 | Create
Staging Disk | EcInGUI | EcDsStReq
uestManage
rServer | CCS
Middleware | Ingest creates a staging disk area for the delivery record file. | | B.3.3 | Read DTF
Tape | EcInGUI | EcDsStReq
uestManage
rServer | CCS
Middleware | Ingest reads the delivery record file. From this file, the type and amount of data to be read is determined. The delivery record file is in the first tar set on the tape. | | B.3.4 | Create
Staging Disk | EcInGUI | EcDsStReq
uestManage
rServer | CCS
Middleware | Ingest creates staging disk areas. The correct Staging Disk Server is determined from the Ingest Database. The amount of staging disk area to request is determined from the delivery record file. | | B.3.5 | Read DTF
Tape | EcInGUI | EcDsStReq
uestManage
rServer | CCS
Middleware | Ingest reads data files from the DTF tape. | | B.3.6 | Send
Request | EcInGUI | EcInReqMgr | CCS
Middleware | The Ingest Graphical User Interface (GUI) process copies the Process Delivery Record (PDR) file read into the remote directory and sends an Ingest Request to the Ingest Request Manager. | | B.3.7 | Granule
Process
Request | EcInReqM
gr | EcInGran | CCS
Middleware | The Ingest Request Manager packages the request into granules and sends them to the Ingest Granule Processor. | | B.4.1 | Connect to
SDSRV | EcInGran | EcDsScienc
eDataServer | CCS
Middleware | Ingest begins a session with the Science Data Server by connecting. The correct Science Data Server is determined during Ingest Request Manager startup from a configuration file. This is pertinent if there are multiple Science Data Servers in use at one DAAC in one mode. The data type is determined from the delivery record file. | Table 3.7.5.3-1. Component Interaction Table: ASTER GDS Tape Insertion (3 of 4) | Step | Event | Interface | Interface | Interface | Description | |-------|-------------------------------------|-------------------------------|------------------------------------|-------------------|---| | | | Client | Provider | Mech. | | | B.4.2 | Request
MCF | EcInGran | EcDsScienc
eDataServer | CCS
Middleware | Ingest requests the Metadata Configuration File (MCF) from the Science Data Server for the data being inserted. | | B.4.3 | Validate
Metadata | EcInGran | EcDsScienc
eDataServer | CCS
Middleware | After building a metadata file for the input data granule, Ingest asks the Science Data Server to validate the metadata, based on the granule's data type. | | B.5.1 | Request
Data Insert | EcInGran | EcDsScienc
eDataServer | CCS
Middleware | Ingest requests that the received files for the data granule be inserted into the Science Data Server. An Insert request, containing the names of the files comprising the granule, is created. The structure of the Insert Request is hard-coded in the granule processor. The Science Data Server validates the metadata and determines the archived names of the files. Upon completion of the insert, the status is asynchronously reflected on the GUI monitor and control screen. | | B.5.2 | STMGT
Store | EcDsScien
ceDataSer
ver | EcDsStReq
uestManage
rServer | CCS
Middleware | The Science Data Server requests that the granule's files be archived. The Storage Management Archive Server reads the inserted files directly from the Ingest staging disk on which they are residing. STMGT will calculate a checksum for a configurable percentage of files that do not yet have one. STMGT will verify the checksum value for the files based on the ChecksumonIngest flag. The correct archive is determined from information configured via the Storage Management Graphical User Interface (GUI). Files may be directed to different tapes based on observation time to optimize tape usage. | | B.5.3 | Adding a
Granule to
Inventory | EcDsScien
ceDataSer
ver | Sybase
ASE/SQS | CtLib | The validated metadata is parsed and added to the inventory of the Science Data Server, this includes checksum information when available. | | B.6.1 | Trigger
Event | EcDsScien
ceDataSer
ver | EcSbSubSe
rver | CCS
Middleware | Upon successful insertion of data granule, the AST_L1A:Insert or the AST_L1B:Insert event is triggered. The correct Subscription Server is determined from the Science Data Server configuration. Provided with the event triggering is the Universal Reference (UR) of the inserted granule. | Table 3.7.5.3-1. Component Interaction Table: ASTER GDS Tape Insertion (4 of 4) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|-------------------------------|---------------------|-----------------------|--------------------|--| | B.7.1 | Retrieve
Subscription
s | EcSbSubS
erver | Sybase ASE | CtLib | The Subscription Server queries the Sybase ASE database determining which subscriptions need to be activated or fired. Each query "hit" is an activated subscription and executes independently. | | B.8.1 | Build E-mail | EcSbSubS
erver | EcSbSubSe
rver | Internal | The Subscription Server builds an email notification that the user's subscription on the AST_L1A:Insert or AST_L1B:Insert event has been fired. This notification identifies the event, the subscription ID, the Granule UR that was inserted and the previously supplied User String. | | B.8.2 | Send
Notification | EcSbSubS
erver | Science
User | E-mail | The notice is e-mailed to the Science User.
The e-mail address is what the user typed
in for the subscription. | # 3.7.6 ASTER Backward Chaining Thread This thread shows how the system supports requests from ECS users to produce data requiring a sequence of algorithms to be run. # 3.7.6.1 ASTER Backward Chaining Thread Interaction Diagram - Domain View Figure 3.7.6.1-1 depicts the ASTER Backward Chaining Interaction. Figure 3.7.6.1-1. ASTER Backward Chaining Interaction Diagram ### 3.7.6.2 ASTER Backward Chaining Thread Interaction Table - Domain View Table 3.7.6.2-1 depicts the Interaction - Domain View: ASTER Backward Chaining. Table 3.7.6.2-1. Interaction Table - Domain View: ASTER Backward Chaining (1 of 5) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondi
tions | Description | |------|---------------------|---------------------|-----------------------|----------------|---------------------------|---| | C.1 | Inventory
Search | Science
User | CLS
(EDG) | None | None | Upon notification of data resulting from the Data Acquisition Request (DAR), the Science User looks up the data granule in order to determine its metadata characteristics. | | C.2 | Search | CLS
(EDG) | DMS
(V0
GTWAY) | None | None | The EOS Data Gateway (EDG) submits the Science User's search criteria to the V0 Gateway in Object Description Language (ODL) format, via a specific socket. | Table 3.7.6.2-1. Interaction Table - Domain View: ASTER Backward Chaining (2 of 5) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondi | Description | |------|-----------------------------------|-------------------------------|--|----------------|------------------|--| | | | | | | tions | | | C.3 | Search | DMS
(V0
GTWAY) | DSS
(SDSRV) | None | None | The V0 Gateway translates the Search criteria from ODL to a query object (using GIParameters), and submits that query to the search service. The V0 Gateway optionally configures a chunk size, which determines how many granules are returned to the V0 Gateway at one time. | | C.4 | Retrieve
Media | DMS
(V0
GTWAY) | CSS
(Configura
tion
Registry) | None | None | The results of this search are returned synchronously. The media options are returned from the Communications Subsystem's Configuration Registry Server and the results are passed back to the EOS Data Gateway, which displays them to the Science User. | | C.5 | Call DAAC
(via
telephone) | Science
User | DAAC
User
Services
Represent
ative | None | None | Upon determining the data take resulted in useful data, the Scientist decides to call the DAAC, requesting that
a L2 Surface Temperature (AST_08) granule is produced from the AST_L1B data. The Scientist requests that the AST_08 data be shipped electronically to his/her workstation. | | C.6 | Lookup
Algorithms | DAAC
Production
Planner | Technical
Baseline | None | None | The DAAC Production Planner determines the process to take the AST_L1B data into AST_08 data. The process is a two-stage algorithm sequence: chaining the ACT and ETS algorithms. | | C.7 | Subscribe
(AST_08,
FtpPush) | DAAC
Production
Planner | CSS
(SBSRV) | None | None | The DAAC Production Planner places a subscription for the Science User to receive the resultant AST_08 granule, via an FtpPush. | | C.8 | Create
Production
Request | DAAC
Production
Planner | PLS
(PLANG) | None | None | The DAAC Production Planner creates Data Processing Requests (DPRs) for ACT and ETS Product Generation Executive (PGEs). | Table 3.7.6.2-1. Interaction Table - Domain View: ASTER Backward Chaining (3 of 5) | Step | Event | Interface | Interface | (3 01 3) | Step | Description | |------|---------------------------------|-------------------------------|----------------|---|---|---| | Step | Event | Client | Provider | Issues | Precondi
tions | Description | | C.9 | Activate
Production
Plan | DAAC
Production
Planner | PLS
(PLANG) | None | PGEs
passed
SSI&T-
Plan
already
created. | The DAAC Production Planner activates a plan, which includes DPRs for ACT and ETS PGEs. | | C.10 | Submit
DPRs | PLS
(PLANG) | DPS
(PRONG) | None | None | DPRs for ACT and ETS are submitted to the Data Processing Subsystem (DPS). | | C.11 | Release
Job (ACT) | PLS
(PLANG) | DPS
(PRONG) | None | None | Since all inputs are available to run the ACT PGE, references to those input granules are passed to the Data Processing Subsystem, and the ACT job is released. | | C.12 | Acquire
Data (ACT
input) | DPS
(PRONG) | DSS
(SDSRV) | 24
AST_A
NC
@4MB,
1
GDAS
0ZFH
@4MB,
1
AST_L
1B @5
MB | AST_AN
C &
GDAS0Z
FH data
already
inserted | The Data Processing Subsystem submits an acquire request for input granules, via an FtpPush, for input to the ACT PGE. | | C.13 | Run PGE
(ACT) | DPS
(PRONG) | DPS
(PRONG) | AST_0
9T
@9.7
MB | None | The ACT PGE runs, creating AST_09T granules. | | C.14 | Insert
Data
(AST_09T
) | DPS
(PRONG) | DSS
(SDSRV) | None | AST_09T
ESDT | The Data Processing Subsystem sends a request to the Data Server Subsystem to insert the newly created AST_09T granule. | | C.15 | Trigger
Event | DSS
(SDSRV) | CSS
(SBSRV) | None | None | Trigger the AST_09T:Insert event. | | C.16 | Notificatio
n | CSS
(SBSRV) | PLS
(PLANG) | None | PLS
Subscript
ions for
AST_09T
:Insert
event | Send direct notification to the Planning Subsystem (PLS), notifying that there is a newly inserted AST_09T granule. Notification message includes the Universal Reference (UR) of the AST_09T granule. | Table 3.7.6.2-1. Interaction Table - Domain View: ASTER Backward Chaining (4 of 5) | | Stan Frank Interfers Interfers Data Stan Description | | | | | | | |------|--|---------------------|-----------------------|--|---|--|--| | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondi
tions | Description | | | C.17 | Release
Job (ETS) | PLS
(PLANG) | DPS
(PRONG) | None | None | The Planning Subsystem releases the job containing the ETS PGE. | | | C.18 | Acquire
Data
(anc.) | DPS
(PRONG) | DSS
(SDSRV) | 1
AST_A
NC
@722
MB | AST_AN
C data
already
inserted | The Data Processing Subsystem submits an acquire request for the ancillary product, AST_ANC, via an FtpPush, for input to ETS PGE. Note that other input to ETS, AST_09T, is already available on the Data Processing Subsystem resources. | | | C.19 | Run PGE
(ETS) | DPS
(PRONG) | DPS
(PRONG) | 1
AST_0
8 @2.3
MB, 1
AST_0
9T
@6.6M
B | None | The ETS PGE runs, creating both AST_08 and AST_05 data granules. | | | C.20 | Insert
Data
(AST_08) | DPS
(PRONG) | DSS
(SDSRV) | None | AST_08
and
AST_05
ESDTs | The Data Processing Subsystem sends a request to the Data Server Subsystem to insert the newly created AST_08 and AST_05 granules. | | | C.21 | Trigger
Event | DSS
(SDSRV) | CSS
(SBSRV) | None | None | Trigger the AST_08:Insert and AST_05:Insert events. | | | C.22 | Notificatio
n | CSS
(SBSRV) | Science
User | None | None | Send an e-mail notification to the Science User, notifying that the AST_08 granule has been inserted. The Notification message includes the Universal Reference (UR) of the AST_08 granule. | | | C.23 | Acquire
Data | CSS
(SBSRV) | DSS
(SDSRV) | None | None | The Communications Subsystem Subscription Server (SBSRV) submits an acquire request, on behalf of the Science User, to have the AST_08 granule shipped, via an FtpPush, to the Scientist's workstation. | | | C.24 | Ftp Data | DSS
(SDSRV) | Science
User | 1
AST_0
8 @
2.3 MB | None | The Data Server Subsystem transfers (via the FTP service) the AST_08 data to the Scientist's workstation. | | Table 3.7.6.2-1. Interaction Table - Domain View: ASTER Backward Chaining (5 of 5) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondi
tions | Description | |------|-------------------------|---------------------|-----------------------|----------------|---------------------------|---| | C.25 | Distributio
n Notice | DSS
(SDSRV) | Science
User | None | None | The Data Server Subsystem emails notification to the Science User, notifying him/her of the presence of the AST_08 data on their workstation. | ### 3.7.6.3 ASTER Backward Chaining Thread Component Interaction Table Table 3.7.6.3-1 provides the Component Interaction: ASTER Backward Chaining. Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (1 of 24) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|---|---------------------|--------------------------|--------------------|--| | C.1.1 | Startup
EDG | Science
User | iPlanet
Web
Server | Command | A Science User invokes a Netscape browser and navigates to the EOS Data Gateway home page. | | C.1.2 | Select
Inventory
Search,
Provide
Query
constraints,
Submit
Query | Science
User | iPlanet
Web
Server | GUI | The Science User provides search constraints for the AST_L1B granules desired. When query constraints are completed, the query is submitted. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (2 of 24) | <u> </u> | _ | I | | (2 01 24) | | |----------|--------------------------------------|----------------------------|-------------------------------|---------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | C.2.1 | V0
Gateway
Inventory
Search | iPlanet
Web
Server | EcDmV0
ToEcsGa
teway | ODL, over sockets | The EOS Data Gateway submits a search to the V0 Gateway, by converting the search criteria into an Object Description Language (ODL) structure and passing that structure to a socket provided by the V0 Gateway. The correct socket is determined from configuration information contained in the Valids file. | | C.3.1 | Establish
ECS User | EcDmV0
ToEcsGa
teway | EcMsAc
RegUser
Srvr | CCS
Middleware | The V0 Gateway retrieves the User Profile using the ECS Authenticator from an Object Description Language (ODL) message, which includes an encrypted User ID and Password. The User Registration Server is replicated across DAACs, so the connection is made to the local User Registration Server. | | C.3.2 | Request
Attribute
Mapping | EcDmV0
ToEcsGa
teway | EcDmDic
tServer | CtLib
(RWDBTool) | The V0 Gateway translates the V0 terms from ODL into ECS names for query submittal. The interface is directly to the Data Dictionary database. The database name is retrieved from a configuration file. | | C.3.3 | Connect to
SDSRV | EcDmV0
ToEcsGa
teway | EcDsSci
enceData
Server | CCS
Middleware | The V0 Gateway first connects to the Science Data Server.
The correct Science Data Server is determined from the configuration information. | | C.3.4 | SDSRV
Query | EcDmV0
ToEcsGa
teway | EcDsSci
enceData
Server | CCS
Middleware | The V0 Gateway translates the query into a DsClQuery object. This object is handed to the search interface of the DsCl Earth Science Data Type (ESDT) ReferenceCollector. This search method is synchronous, so the results of the search are returned to the calling function. After the search, the V0 Gateway receives a list of Universal References (URs). Then it does an "Inspect" to the Science Data Server to get the metadata. It first performs a GetQueryableParameter to determine all attributes associated with each granule. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (3 of 24) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|-------------------------|--|----------------------------|----------------------|---| | C.3.5 | Request
Metadata | EcDsSci
enceData
Server | Sybase
ASE/SQ
S | CtLib | The Science Data Server breaks down the query object and translates it into a sequence of calls to the inventory database. Resultant rows are converted into data granules, each with their metadata extracted from the database. These results are packaged and returned to the Query client. | | C.3.6 | Result
Retrieval | iPlanet
Web
Server | EcDmV0
ToEcsGa
teway | ODL, over
Sockets | When the V0 Gateway gets the results, they are translated into Object Description Language (ODL), and passed back to the EOS Data Gateway. The correct socket for sending results to the EOS Data Gateway is the one used to submit the query. The EOS Data Gateway then displays the results of the query to the User. | | C.4.1 | Retrieve
Media | EcDmV0
ToEcsGa
teway | EcCsReg
istry | CCS
Middleware | The V0 Gateway retrieves the media from the Communications Subsystem's Registry Server. The media are translated into Object Description Language (ODL), and the ODL is put into the search result. | | C.5.1 | Startup
SBSRV
GUI | DAAC
User
Services
Represe
ntative | EcSbGui | Xterm | After receiving a call from the user for AST_08 data made from the AST_L1B granules, a User Services Representative then calls the DAAC Production Planner, communicating the need for the AST_08 product. The DAAC Production Planner determines the sequence of algorithms required. The algorithms needed are determined from the Technical Baseline and a series of queries on the PDPS database. The DAAC User Services Representative invokes the Subscription Server Graphical User Interface (GUI) application. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (4 of 24) | | | 1 | | (4 01 24) | | |-------|---|--|-----------------------|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | C.5.2 | Create &
Submit
Subscriptio
n from GUI | DAAC
User
Services
Represen
tative | EcSbGui | Xterm | The DAAC User Services Representative represents him/herself as the Science User. The DAAC Operator brings up the Graphical User Interface (GUI) and clicks the button to create a new subscription. A list of events is then displayed from which the operator can choose to subscribe. The DAAC Operator selects the AST_08:Insert Event for subscription. Two actions, besides notification, are available from the Subscription Server at this time. FtpPush as a distribution mechanism is input via a GUI button. Other parameters required for FtpPush (including the Science User's host name, target directory, Ftp user name, and Ftp password) are input via the GUI. The other option is an Ftp Pull, also selected via a GUI button. There are no other parameters required for this option. | | C.5.3 | Retrieve
Distribution
Options | EcSbGui | EcCsReg istry | CCS
Middleware | The Subscription Server GUI retrieves distribution options from the Communications Subsystem's Configuration Registry (FtpPush, FtpPull). | | C.5.4 | Submit
Subscriptio
n | EcSbGui | EcSbSub
Server | CCS
Middleware | Submit the subscription to the Subscription Server. This is accomplished with the EcSbSubscription interface class in the EcSbCI library. The correct Subscription Server is determined via a Server Universal Reference (UR), declared in the configuration file. | | C.5.5 | Persist a
Subscriptio
n | EcSbSub
Server | Sybase
ASE | CtLib | The subscription is stored in the Sybase ASE Database. | | C.6.1 | Startup
Production
Request
Editor | DAAC
Productio
n Planner | EcPIPRE
ditor_IF | GUI | The DAAC Planner invokes the Production Request Editor. The planner double clicks on the Planning Workbench icon. | | C.6.2 | Build
Production
Requests | DAAC
Productio
n Planner | EcPIPRE
ditor_IF | GUI | The DAAC Planner creates Production Requests for the ACT and ETS algorithms. Algorithms (ACT and ETS) are selected, along with the time domain of the output (and input) data. Dependency of the ETS PGE on the ACT PGE, based on ACT output, is established. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (5 of 24) | | | | <u> </u> | 3 01 24) | | |------------|---|------------------------------------|-------------------------------|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | C.6.3 | Connect to
SBSRV | EcPIPREdit
or_IF | EcSbSub
Server | CCS
Middleware | The Editor connects to the subscription server in order to subscribe for notification of new AST_L1B granules. | | C.6.4 | Submit
Subscriptio
n | EcPIPREdit
or_IF | EcSbSub
Server | CCS
Middleware | Submit the subscription to the Subscription Server. This is accomplished with the EcClSubscription interface class. | | C.6.5 | Store a
Subscriptio
n | EcSbSubSe
rver | Sybase
ASE | CtLib | The Subscription is stored in the Sybase ASE Database. | | C.6.6 | Connect to SDSRV | EcPIPREdit
or_IF | EcDsSci
enceData
Server | CCS
Middleware | Looking for input granules for the ACT PGE, the Production Request Editor first connects to the Science Data Server. | | C.6.7 | SDSRV
Query | DpPrDssIF
(Library
function) | EcDsSci
enceData
Server | CCS
Middleware | The DpPrDssIF creates an IF object to connect with the Science Data Server and performs the query. | | C.6.8 | Request
Metadata | EcDsScienc
eDataServe
r | Sybase
ASE/SQ
S | CtLib | The Science Data Server breaks down the Query object and translates it into a sequence of calls to the inventory database. Resultant rows are converted into data granules, each with their metadata extracted from the database. These results are packaged and returned to the Query client. Results are packaged in the ACT Data Processing Request (DPR). | | C.6.9 | Inspect
Granule
Value
Parameters | EcPIPREdit
or_IF | EcDsScie
nceData
Server | CCS
Middleware | The Editor checks the granule's metadata attributes (type, version, file size and temporal range) to establish job dependencies. | | C.6.1
0 | Connect to
SBSRV | EcPIPREdit
or_IF | EcSbSub
Server | CCS
Middleware | The Editor connects to the Subscription Server to subscribe for notification of new AST_09 granules. | | C.6.1
1 | Submit
Subscriptio
n | EcPIPREdit
or_IF | EcSbSub
Server | CCS
Middleware | Submit the subscription to the Subscription Server. This is accomplished with the EcClSubscription interface class. | | C.6.1
2 | Store a
Subscriptio
n | EcSbSubSe
rver | Sybase
ASE | CtLib | The Subscription is stored in the Sybase ASE Database. | | C.7.1 | Startup
Planning
Workbench | DAAC
Operator -
Planner | EcPIWb | GUI | The DAAC Planner invokes the Planning workbench. The Planner double clicks on the Planning Workbench icon. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (6 of 24) | Step | Event | Interface | Interface | Interface | Description | |-------
--|-------------------------------|-------------------------------|---|---| | | | Client | Provider | Mech. | | | C.7.2 | Create a
Plan | DAAC
Operator -
Planner | EcPIWb | GUI | The Planner interacts with the Planning Workbench Graphical User Interface (GUI) to create a plan with DPRs for the ACT and ETS PGEs. | | C.7.3 | Create
DPR | EcPIWb | EcDpPrJ
obMgmt | CCS
Middleware | The Production Planning Workbench sends the DPRID to the Data Processing Subsystem and whether the DPR is waiting for external data. | | C.8.1 | Submit
DPRs
(Create
Job Box) | EcDpPrJob
Mgmt | AutoSys | JIL (AutoSys
API) | The DPRs (one at a time - one for ACT and a dependent one for ETS PGE) in the plan are submitted to AutoSys by the Data Processing Subsystem for dependent execution. These jobs are dependent on input data. | | C.9.1 | Start Job
Box | EcDpPrJob
Mgmt | AutoSys
Event_da
emon | Start Job
Event sent
to AutoSys
via AutoSys
API | The job containing the ACT PGE is released. | | C.9.2 | Initiate Job
Processing | Event_dae mon | EcDpPrE
M | Command line | The job containing the ACT PGE begins processing. | | C.9.3 | Connect to
SDSRV | EcDpPrEM | EcDsSci
enceData
Server | CCS
Middleware | The Data Processing Subsystem begins a session with the Science Data Server by connecting to acquire the ACT PGE. The correct Science Data Server is identified from information retrieved from the PDPS database (PISdsrvString table). | | C.9.4 | Add PGE
granule's
UR to
Session | EcDpPrEM | EcDsSci
enceData
Server | CCS
Middleware | The Execution Manager establishes the data context of the session with the Science Data Server by adding the PGE granule's UR of the PGE granule to the Earth Science Data Type (ESDT) ReferenceCollector. | | C.9.5 | Retrieve
Granule
Metadata
from
Inventory | EcDsScienc
eDataServe
r | Sybase
ASE/SQ
S | CtLib | The Science Data Server completes establishing the data context by retrieving the metadata for the requested PGE granule from the Sybase ASE/SQS database. The metadata for the PGE granule is passed back to the reference objects for each granule. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (7 of 24) | | | I | |) | | |-------|--|-------------------------------|------------------------------------|--------------------|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | C.9.6 | Acquire
Data | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The Execution Manager requests granules by submitting an acquire request for the PGE granule. The acquire request is for an FtpPush of all granules in the Earth Science Data Type (ESDT) ReferenceCollector. This request is synchronous (meaning the return of the "submit" call of the request contains the results of the request). This means the response is not sent until the PGE granule files have been transferred (via the Ftp service) to the Data Processing Subsystem disks. This request asks for no distribution notice to be emailed. The acquire request structure is hard-coded. | | C.9.7 | Create
Staging
Disk | EcDsScien
ceDataSer
ver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Science Data Server verifies access privileges for the granule and creates a staging disk for the metadata file, which allocates space and passes back a reference to that disk space. The correct Staging Disk Server is determined from the Science Data Server configuration. The amount of staging disk to request is determined by the size of the metadata file. | | C.9.8 | Create
Metadata
file | EcDsScien
ceDataSer
ver | EcDsScien
ceDataSer
ver | CCS
Middleware | The Science Data Server creates a file containing the Product Generation Executable (PGE) granule's metadata before passing to the Data Distribution Server. | | C.9.9 | Distribute
Granules,
Synchrono
us | EcDsScien
ceDataSer
ver | EcDsDistri
butionServ
er | CCS
Middleware | The Science Data Server submits a request to the Data Distribution Server. The request includes, for each granule, a reference to the metadata file as well as all data files. Other parameters from the acquire request are passed to the Data Distribution Server. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (8 of 24) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |--------|----------------------------------|--------------------------------|------------------------------------|--------------------|--| | C.9.10 | Create
Staging
Disk | EcDsDistri
butionSer
ver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server creates staging disk for the granule files in the archive. This allocates space and passes back a reference to that disk space. The correct Staging Disk Server is determined from configuration information in Storage Management. | | C.9.11 | STMGT
Retrieve | EcDsDistri
butionSer
ver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server requests the Storage Management Request Manager to retrieve the Product Generation Executable (PGE) granule file archived. This results in the file being staged to read-only cache disks. STMGT will verify the checksum for a configurable percentage of the files that have one. This means all files needed to fulfill the distribution request are on disk, and ready to be copied. This returns references to the files in the read-only cache. Locating the files may use the observation date when archive tape placement is optimized based on date. | | C.9.12 | Link files to
Staging
Disk | EcDsDistri
butionSer
ver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server links the files from the read-only cache into the staging disk areas. | | C.9.13 | Link files to
Staging
Disk | EcDsDistri
butionSer
ver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server links the metadata files from the Science Data Server into the Staging Disk Server staging disk areas. | | C.9.14 | FtpPush
Files | EcDsDistri
butionSer
ver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server now creates the Resource manager for Ftp Pushes via a Resource Manager Factory. The correct resource manager is determined from the media type handed to the resource factory (FtpPush, in this case). The correct FTP Server is determined from configuration information within the resource factory. The files, host, location, user name and password are all determined from the information provided in the original acquire request. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (9 of 24) | _ | | 1 _ | · · | 01 24) | | |--------|--|-------------------------------|---|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | C.9.15 | Ftp Files | EcDsStFtp
Server | Operating System Ftp daemon (EcDpPrE M) | Ftp | The FTP Server performs the actual Ftp of the PGE files to the Data Processing Subsystem. | | C.10.1 | Connect to
SDSRV | EcDpPrEM | EcDsScie
nceDataS
erver | CCS
Middleware | The Execution Manager begins a session with the Science Data Server by connecting. The correct Science Data Server is identified from information retrieved from the PDPS database (PISdsrvString table). | | C.10.2 | Add PGE
granule's
UR to
Session | EcDpPrEM | EcDsScie
nceDataS
erver | CCS
Middleware | The Execution Manager establishes the data context of the session with the Science Data
Server by adding the input granules (1 AST_L1B, 1 GDAS0ZFH and 24 AST_ANC) to the session. The Granule UR of the input granule is added to the Earth Science Data Type (ESDT) ReferenceCollector. Note that this sequence is performed for each input granule, one at a time. | | C.10.3 | Retrieve
Granule
Metadata
from
Inventory | EcDsScien
ceDataSer
ver | Sybase
ASE/SQS | CtLib | The Science Data Server completes establishing the data context by retrieving the metadata for the requested granule from the Sybase ASE/SQS database. The metadata for each granule is passed back to the reference objects for each granule. | | C.10.4 | Acquire
Data | EcDpPrEM | EcDsScie
nceDataS
erver | CCS
Middleware | The Execution Manager requests granules by submitting an acquire request for those granules. The acquire request is for an FtpPush of all granules in the ESDT ReferenceCollector. This request is synchronous (meaning the return of the "submit" call of the request contains the results of the request). This means the response is not sent until the granule files have been transferred (via the Ftp service) to the Data Processing Subsystem disks. This request asks for no distribution notice to be emailed. The acquire request structure is hard-coded. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (10 of 24) | | 1 | 1 | • | 01 Z+) | <u></u> | |--------|--|--------------------------------|------------------------------------|--------------------|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | C.10.5 | Create
Staging
Disk | EcDsScien
ceDataSer
ver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Science Data Server verifies access privileges for the granule and creates staging disk for metadata files, which allocates space and passes back a reference to that disk space. The amount of staging disk to request is determined by the size of the metadata file. | | C.10.6 | Create
Metadata
file | EcDsScien
ceDataSer
ver | EcDsScien
ceDataSer
ver | CCS
Middleware | For each granule referenced in the acquire request, the Science Data Server creates a file containing the granule's metadata before passing to the Data Distribution Server. | | C.10.7 | Distribute
Granules,
Synchrono
us | EcDsScien
ceDataSer
ver | EcDsDistri
butionServ
er | CCS
Middleware | The Science Data Server submits a request to the Data Distribution Server. The request includes, for each granule, a reference to the metadata file as well as all data files. Other parameters from the acquire request are passed to the Data Distribution Server. | | C.10.8 | Create
Staging
Disk | EcDsDistri
butionServ
er | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server creates staging disk for the granule files in the archive. This allocates space and passes back a reference to that disk space. The correct Staging Disk Server is determined from the information passed by the Science Data Server in the distribution request, which is the Science Data Server configuration. The amount of staging disk to request is determined by the size of the metadata file. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (11 of 24) | Step | Event | Interface | Interface | Interface | Description | |---------|-------------------------------|--------------------------------|------------------------------------|-------------------|---| | 0.40.0 | 071407 | Client | Provider | Mech. | T. D. Divilio | | C.10.9 | STMGT
Retrieve | EcDsDistri
butionServ
er | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server requests the Storage Management Request Manager to retrieve the granule file archived. This results in the file being staged to read-only cache disks. STMGT will verify the checksum for a configurable percentage of the files that have one. This means all files needed to fulfill the distribution request are on disk and ready to be copied. The correct archive object to request is determined from the information provided by the Science Data Server in the distribution request. Locating the files may use the observation date when archive tape placement is optimized based on date. This returns references to the files in the read-only cache. | | C.10.10 | Link files to
Staging Disk | EcDsDistri
butionServ
er | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server links the files from the read-only cache into the staging disk. | | C.10.11 | Link files to
Staging Disk | EcDsDistri
butionServ
er | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server links the metadata files from the Science Data Server into the staging disk created by the Staging Disk Server. | | C.10.12 | FtpPush Files | EcDsDistri
butionServ
er | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server now creates the Resource manager for Ftp Pushes via a Resource Manager Factory. The correct resource manager is determined from the media type handed to the resource factory (FtpPush, in this case). The correct FTP Server is determined from configuration information within the resource factory. The files, host, location, user name and password are all determined from the information provided in the original acquire request. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (12 of 24) | (12 01 24) | | | | | | | | |-------------|---|---------------------|--|--------------------|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | C.10.1
3 | Ftp Files | EcDsStFtp
Server | Operating System Ftp daemon (EcDpPrEM) | Ftp | The FTP Server performs the actual Ftp of the files to the Data Processing Subsystem via the Operating System Ftp daemon. | | | | C.11.1 | Request
Metadata
Configuratio
n File | EcDpPrEM | EcDsScienc
eDataServer | CCS
Middleware | The Execution Manager gets the metadata configuration file of the output data's ESDT (AST_09T). Data type and version are from the PDPS database; the correct client name is from the configuration file. | | | | C.11.2 | Run PGE | EcDpPrRu
nPGE | PGE <act></act> | Command line | The ACT PGE is executed. Output files are placed in the output directory. The directory path is established by using a root, which was established by configuration and the specific directory by the job ID. This disk root is cross-mounted by the Data Processing Subsystem with the Data Server Subsystem's Science Data Server and Storage Management CSCIs. This is to ensure they are directly available to the Data Server Subsystem for archival. | | | | C.12.1 | Connect to
SDSRV | EcDpPrEM | EcDsScienc
eDataServer | CCS
Middleware | The Execution Manager begins a session with the Science Data Server by connecting. | | | | C.12.2 | Insert Data
(AST_09T) | EcDpPrEM | EcDsScienc
eDataServer | CCS
Middleware | The Execution Manager requests that the newly created files for the AST_09T granule are inserted into the Data Server. An Insert request, containing the names of the files comprising the granule, is created for each granule. The structure of the Insert Request is hard-coded. The Science Data Server validates metadata and determines the archived names of the files. | | | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (13 of 24) | | (13 01 24) | | | | | | | |--------|-------------------------------------|-------------------------------|------------------------------------|--------------------
---|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | C.12.3 | STMGT
Store | EcDsScien
ceDataSer
ver | EcDsStReq
uestManage
rServer | CCS
Middleware | The Science Data Server requests that the files be archived. The Archive Server must be able to read the inserted files directly from the Data Processing Subsystem disks they are residing on. STMGT will calculate a checksum for a configurable percentage of files that do not yet have one. STMGT will verify the checksum value for the files based on the ChecksumonIngest flag. The archive in which the data is stored is determined from information configured via the Storage Management Graphical User Interface (GUI). Files may be directed to different tapes based on observation time to optimize tape usage. | | | | C.12.4 | Adding a
Granule to
Inventory | EcDsScien
ceDataSer
ver | Sybase
ASE/SQS | CtLib | The validated metadata is parsed and added to the inventory of the Science Data Server, this includes checksum information when available. | | | | C.13.1 | Trigger
Event | EcDsScien
ceDataSer
ver | EcSbSubSe
rver | CCS
Middleware | Upon successful insertion of AST_09T the AST_09T:Insert event is triggered. The correct subscription server is determined from the Science Data Server configuration. Provided with the event triggering is the UR of the inserted granule. | | | | C.13.2 | Retrieve
Subscription
s | EcSbSubS
erver | Sybase ASE | C7tLib | The Subscription Server queries the Sybase ASE database determining which subscriptions need to be activated, or fired. Each query "hit" is an activated subscription and executes independently. | | | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (14 of 24) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |--------|--|-------------------------------|-------------------------------|---------------------------------|--| | C.14.1 | Asynchron
ous Direct
Notification | EcSbSubS
erver | EcPISubM
gr | Message
Passing
Mechanism | The Subscription Server notifies PLS there is a new AST_09T granule available. The UR of the granule is passed in the notification to the user, along with a reference to the subscription that is being fulfilled. Direct Notification is to a Queue name (a Message Passing Mechanism) that PLS- Subscription Manager, provided when the subscription was submitted. | | C.14.2 | Connect to
SDSRV | EcPISubM
gr | EcDsScien
ceDataSer
ver | CCS
Middleware | The Subscription Manager begins a session with the Science Data Server by connecting, in order to determine the use of the new granule. The correct Science Data Server is identified from information retrieved from the PDPS database (PISdsrvString table). | | C.14.3 | Add PGE
granule's
UR to
Session | EcPISubM
gr | EcDsScien
ceDataSer
ver | CCS
Middleware | The Subscription Manager establishes the data context of the session with the Science Data Server by adding AST_09 granule's UR to the ESDT ReferenceCollector. | | C.14.4 | Retrieve
Granule
Metadata
from
Inventory | EcDsScien
ceDataSer
ver | Sybase
ASE/SQS | CtLib | The Science Data Server completes establishing the data context by retrieving the metadata for the requested PGE granule from the Sybase ASE/SQS database. The metadata for the PGE granule is passed back to the reference objects for each granule. | | C.14.5 | Inspect
Granule
Value
Parameters | EcPISubM
gr | EcDsScien
ceDataSer
ver | CCS
Middleware | The Subscription Manager checks the new granule's metadata attributes (type, version, file size and temporal range) to determine, which, if any, jobs can use it as input. | | C.15.1 | Release
Job
Request
(ETS) | EcPISubM
gr | EcDpPrJob
Mgmt | CCS
Middleware | Once it ensures the input granule is to be used to run the job containing ETS from the PDPS database, Planning sets the DPR completion state to "PENDING" and a thread in Job Management creates the job in AutoSys and runs it. | | C.15.2 | Initiate Job
Processing | Event_dae
mon | EcDpPrEM | Command line | The job containing the ETS begins processing. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (15 of 24) | | | | 1 24) | 5 | | |--------|--|-------------------------------|------------------------------------|--------------------|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | C.15.3 | Connect to
SDSRV | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | Processing begins a session with the Science Data Server by connecting, in order to acquire the ETS PGE. The correct Science Data Server is identified from information retrieved from the PDPS database (PISdsrvString table). | | C.15.4 | Add PGE
granule's UR
to Session | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The Execution Manager establishes the data context of the session with the Science Data Server by adding the PGE granule's UR to the ESDT ReferenceCollector. | | C.15.5 | Retrieve
Granule
Metadata
from
Inventory | EcDsScien
ceDataSer
ver | Sybase
ASE/SQS | CtLib | The Science Data Server completes establishing the data context by retrieving the metadata for the requested PGE granule from the Sybase ASE/SQS database. The metadata for the PGE granule is passed back to the reference objects for each granule. | | C.15.6 | Acquire Data | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The Execution Manager requests granules by submitting an Acquire request for the PGE granule. The Acquire request is for an FtpPush of all granules in the ESDT ReferenceCollector. This request is synchronous (meaning the return of the "submit" call of the request contains the results of the request). This means the response is not sent until the PGE granule files have been transferred (via the Ftp service) to the DPS disks. This request asks for no distribution notice to be emailed. The Acquire request structure is hard-coded. | | C.15.7 | Create
Staging Disk | EcDsScien
ceDataSer
ver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Science Data Server verifies access privileges for the granule and creates a staging disk area for the metadata file, which allocates space and passes back a reference to that disk space. The amount of staging disk to request is determined by the size of the metadata file. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (16 of 24) | C4 | F 4 | Interfere | Description | | | |---------|--|----------------------------|------------------------------------|--------------------|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | C.15.8 | Create
Metadata
file | EcDsScienc
eDataServer | EcDsScienc
eDataServer | CCS
Middleware | The Science Data Server creates a file containing the PGE granule's metadata before passing to the Data Distribution Server. | | C.15.9 | Distribute
Granules,
Synchron
ous | EcDsScienc
eDataServer | EcDsDistrib
utionServer | CCS
Middleware | The Science Data Server submits a request to the Data Distribution Server. The request includes, for each granule, a reference to the metadata file as well as all data files. Other parameters from the Acquire request are passed to the Data Distribution Server. | | C.15.10 | Create
Staging
Disk | EcDsDistrib
utionServer | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server creates staging disk areas for the granule files in the archive. This allocates space and passes
back a reference to that disk space. The amount of staging disk to request is determined by the size of the metadata file. | | C.15.11 | STMGT
Retrieve | EcDsDistrib
utionServer | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server requests the Storage Management Request Manager to retrieve the PGE granule file archived. STMGT will verify the checksum for a configurable percentage of the files that have one. This results in the file being staged to read-only cache disks. This means all files needed to fulfill the distribution request are on disk, and ready to be copied. Locating the files may use the observation date when archive tape placement is optimized based on date. This returns references to the files in the read-only cache. | | C.15.12 | Link files
to Staging
Disk | EcDsDistrib
utionServer | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server links the files from the read-only cache into the staging disk. | | C.15.13 | Link files
to Staging
Disk | EcDsDistrib
utionServer | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server links the metadata files from the Science Data Server's staging disk into the staging disk. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (17 of 24) | Step | Event | Interface | Interface | Interface | Description | |---------|--|--------------------------------|---|-------------------|--| | осер | Lvent | Client | Provider | Mech. | Description | | C.15.14 | FtpPush
Files | EcDsDistri
butionServ
er | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server now creates the Resource manager for Ftp Pushes via a Resource Manager Factory. The correct resource manager is determined from the Media Type handed to the resource factory (FtpPush, in this case). The correct FTP Server is determined from the configuration within the resource factory. The files, host, location, user name and password are all determined from the information provided in the original Acquire request. | | C.15.15 | Ftp Files | EcDsStFtp
Server | Operating System ftp daemon (EcDpPrE M) | Ftp | The FTP Server performs the actual Ftp of the PGE files via the Operating System Ftp Daemon to the DPS. | | C.16.1 | Connect
to SDSRV | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The Execution Manager begins a session with the Science Data Server by connecting. The correct Science Data Server is identified from information retrieved from the PDPS database (PISdsrvString table). | | C.16.2 | Add PGE
granule's
UR to
Session | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The Execution Manager establishes the data context of the session with the Science Data Server by adding the input granule (1 AST_ANC) to the session. The Granule UR of the input granule is added to the ESDT ReferenceCollector. Note that this sequence is performed for each input granule, one at a time. | | C.16.3 | Retrieve
Granule
Metadata
from
Inventory | EcDsScien
ceDataSer
ver | Sybase
ASE/SQS | CtLib | The Science Data Server completes establishing the data context by retrieving the metadata for the requested granule from the Sybase ASE/SQS database. The metadata for each granule is passed back to the reference objects for each granule. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (18 of 24) | Step | Event | Interface | Interface | Interface | Description | |--------|--|--------------------------------|------------------------------------|-------------------|--| | Otep | LVCIII | Client | Provider | Mech. | Description | | C.16.4 | Acquire
Data
(anc.) | EcDpPrE
M | EcDsScienc
eDataServer | CCS
Middleware | The Execution Manager requests granules by submitting an Acquire request for those granules. The Acquire request is for an FtpPush of all granules in the ESDT ReferenceCollector. This request is synchronous, meaning that the return of the "submit" call of the request contains the results of the request. This means that the response is not sent until the granule files have been transferred (via the Ftp service) to the DPS disks. This request asks for no distribution notice to be emailed. The Acquire request structure is hard-coded. | | C.16.5 | Create
Staging
Disk | EcDsScie
nceDataS
erver | EcDsStReq
uestManage
rServer | CCS
Middleware | The Science Data Server verifies access privileges for the granule and creates a Staging Disk for metadata files, which allocates space and passes back a reference to that disk space. The amount of staging disk to request is determined by the size of the metadata file. | | C.16.6 | Create
Metadata
file | EcDsScie
nceDataS
erver | EcDsScienc
eDataServer | CCS
Middleware | For each granule referenced in the Acquire request, the Science Data Server creates a file containing the granule's metadata before passing to Distribution. | | C.16.7 | Distribute
Granules,
Synchron
ous | EcDsScie
nceDataS
erver | EcDsDistrib
utionServer | CCS
Middleware | The Science Data Server submits a request to Data Distribution. The request includes, for each granule, a reference to the metadata file as well as all data files. Other parameters from the Acquire request are passed to the Data Distribution Server. | | C.16.8 | Create
Staging
Disk | EcDsDistri
butionSer
ver | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server creates Staging Disk areas for the granule files in the archive. This allocates space and passes back a reference to that disk space. The amount of staging disk to request is determined by the size of the metadata file. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (19 of 24) | _ | | |) | B. a. a. ata di a. a. | | |---------|----------------------------------|----------------------------|---|-----------------------|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | C.16.9 | STMGT
Retrieve | EcDsDistrib
utionServer | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server requests the Storage Management Request Manager to retrieve the granule file archived. STMGT will verify the checksum for a configurable percentage of the files that have one. This results in the file being staged to read-only cache disks. This means all files needed to fulfill the distribution request are on disk, and ready to be copied. The correct archive object to request is determined from the information provided by the Science Data Server in the distribution request. Locating the files may use the observation date when archive tape placement is optimized based on date. This returns references to the files in the read-only cache. | | C.16.10 | Link files
to Staging
Disk | EcDsDistrib
utionServer | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server links the files from the read-only cache into the staging disk. | | C.16.11 | Link files
to Staging
Disk | EcDsDistrib
utionServer | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server links the metadata files from the Science Data Server's staging disk into the staging disk areas. | | C.16.12 | FtpPush
Files | EcDsDistrib
utionServer | EcDsStReq
uestManage
rServer | CCS
Middleware | The Data Distribution Server now creates the Resource manager for Ftp Pushes via a Resource Manager Factory. The correct resource manager is determined from the Media Type handed to the resource factory (FtpPush, in this case). The correct FTP Server is determined from configuration within the resource factory. The files, host, location, user name and password are all determined from the information provided in the original Acquire request. | | C.16.13 | Ftp Files | EcDsStFtpS
erver | Operating
System Ftp
daemon
(EcDpPrEM) | Ftp | The FTP Server performs the Ftp of the files via the Operating System ftp
daemon to the DPS. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (20 of 24) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |--------|--|---------------------|-------------------------------|--------------------|---| | C.17.1 | Request
Metadata
Configuration
File | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The Execution Manager gets the metadata configuration file of the output data's ESDT (AST_08 and AST_05). Data type and version are from PDPS database; correct client name is from configuration file. | | C.17.2 | Run PGE
(ETS) | EcDpPrRu
nPGE | PGE <ets></ets> | Command line | ETS is executed. Output files are placed in the output directory. The directory path is established by using a root, which was established by configuration and the specific directory by the job ID. This disk root is cross-mounted by DPS with the Science Data Server and Storage Management CSCIs. This is to ensure that they are directly available to the DSS, for archival. | | C.18.1 | Connect to
SDSRV | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The Execution Manager begins a session with the Science Data Server by connecting. | | C.18.2 | Insert Data
(AST_08) | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The Execution Manager requests that the newly created files for the AST_08 and AST_05 granules are inserted into the Data Server. An Insert request, containing the names of the files comprising the granule, is created for each granule. The structure of the Insert Request is hard-coded. The Science Data Server validates metadata and determines the archived names of the files. Note that these inserts occur, one granule at a time. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (21 of 24) | | (21 01 24) | | | | | | | | |--------|-------------------------------------|-------------------------------|------------------------------------|--------------------|--|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | | C.18.3 | STMGT
Store | EcDsSci
enceData
Server | EcDsStReq
uestManag
erServer | CCS
Middleware | The Science Data Server requests that the files are archived. The archive server must be able to read the inserted files directly from the DPS disks that they are residing on. Files may be directed to different tapes based on observation time to optimize tape usage. STMGT will calculate a checksum for a configurable percentage of files that do not yet have one. STMGT will verify the checksum value for the files based on the ChecksumonIngest flag. | | | | | C.18.4 | Adding a
Granule to
Inventory | EcDsSci
enceData
Server | Sybase
ASE/SQS | CtLib | The validated metadata is parsed and added to the inventory of the Science Data Server, this includes checksum information when available. | | | | | C.19.1 | Trigger
Event | EcDsSci
enceData
Server | EcSbSubS
erver | CCS
Middleware | Upon successful insertion of AST_08 the AST_08:Insert event is triggered. The correct subscription server is determined from the Science Data Server configuration. Provided with the event triggering is the UR of the inserted granule. | | | | | C.19.2 | Retrieve
Subscription
s | EcSbSub
Server | Sybase
ASE | CtLib | The Subscription Server queries the Sybase ASE database determining which subscriptions need to be activated, or fired. Each query "hit" is an activated subscription and executes independently. | | | | | C.20.1 | Send
Notification | EcSbSub
Server | Science
User | E-mail | The Subscription Server builds an email notification that the user's subscription on the AST_08:Insert event has been fired. This notification identifies the event, the subscription ID, the Granule UR that was inserted and the previously supplied User String. The e-mail is sent to the Science User. | | | | | C.21.1 | Connect to
SDSRV | EcSbSub
Server | EcDsScien
ceDataSer
ver | CCS
Middleware | To fulfill a standing order, the Subscription Server begins a session with the Science Data Server, on behalf of the subscription user. The correct Science Data Server is determined by the Granule UR provided with the event triggering. | | | | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (22 of 24) | (22 OI 24) | | | | | | | | |------------|--|-------------------------------|------------------------------------|--------------------|---|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | C.21.2 | Add PGE
granule's UR
to Session | EcSbSub
Server | EcDsScien
ceDataSer
ver | CCS
Middleware | The Subscription Server establishes the data context of the session with the Science Data Server by adding the input granules to the session. The Granule UR of each input granule is added to the ESDT ReferenceCollector. | | | | C.21.3 | Retrieve
Granule
Metadata
from
Inventory | EcDsSci
enceData
Server | Sybase
ASE/SQS | CtLib | The Science Data Server completes establishing the data context by retrieving the metadata for the requested granules from the Sybase ASE/SQS database. The metadata for each granule is passed back to the reference objects for each granule. | | | | C.21.4 | Acquire Data | EcSbSub
Server | EcDsScien
ceDataSer
ver | CCS
Middleware | The Subscription Server fulfills the standing order for the AST_08 granule by submitting an Acquire request for the granule. The Acquire request is for an FtpPush of all granules in the ESDT ReferenceCollector. This request is asynchronous, meaning that the return of the "submit" call of the request only contains the status of the request's submittal. This request asks for a distribution notice to be emailed to the client. The Acquire request structure was hard-coded within the subscription server. | | | | C.21.5 | Create
Staging Disk | EcDsSci
enceData
Server | EcDsStReq
uestManag
erServer | CCS
Middleware | The Science Data Server verifies access privileges for the granule and creates staging disk areas for the metadata files, which allocates space and passes back a reference to that disk space. The amount of staging disk to request is determined by the size of the metadata file. | | | | C.21.6 | Create
Metadata file | EcDsSci
enceData
Server | EcDsScien
ceDataSer
ver | CCS
Middleware | For each granule referenced in the Acquire request, the Science Data Server creates a file containing the granule's metadata before passing to Distribution. | | | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (23 of 24) | Step | Event | Interface | Interface | Interface | Description | |---------|--|--------------------------------|------------------------------------|-------------------|---| | | | Client | Provider | Mech. | | | C.21.7 | Distribute
Granules,
Synchronou
s | EcDsSci
enceData
Server | EcDsDistri
butionServ
er | CCS
Middleware | The Science Data Server submits a request to Data Distribution. The request includes, for the granule, a reference to the metadata file as well as the data file. Other parameters from the Acquire request are passed to the Data Distribution Server. | | C.21.8 | Create
Staging Disk | EcDsDist
ributionS
erver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server creates staging disk areas for the granule files in the archive. This allocates space and passes back a reference to that disk space. The amount of staging disk area to request is determined by the size of the metadata file. | | C.21.9 | STMGT
Retrieve | EcDsDist
ributionS
erver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server requests Storage Management to
retrieve the granule file that is archived. This results in the file being staged to readonly cache disks. STMGT will verify the checksum for a configurable percentage of the files that have one. This means all files needed to fulfill the distribution request are on disk, and ready to be copied. Locating the files may use the observation date when archive tape placement is optimized based on date. This returns references to the files in the read-only cache. | | C.21.10 | Link files to
Staging Disk | EcDsDist ributionS erver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server links the files from the read-only cache into the staging disk. | | C.21.11 | Link files to
Staging Disk | EcDsDist ributionS erver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server links the metadata files from the Science Data Server's Staging Disk into the staging disk. | Table 3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining (24 of 24) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |---------|---------------------------------|--------------------------------|---|--------------------|--| | C.21.12 | FtpPush
Files | EcDsDist
ributionS
erver | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server now creates the Resource manager for ftp Pushes via a Resource Manager Factory. The correct resource manager is determined from the Media Type handed to the resource factory (FtpPush, in this case). The correct ftp Server is determined from configuration within the resource factory. The files, host, location, user name and password are all determined from the information provided in the original Acquire request. | | C.22.1 | Ftp Files | EcDsStFt
pServer | Operating
System ftp
daemon
(MODIS IT) | Ftp | The FTP Server performs the actual Ftp of the files via the Operating System Ftp Daemon to the MODIS IT. | | C.23.1 | Build
Distribution
Notice | EcDsDist
ributionS
erver | EcDsDistri
butionServ
er | Internal | The Data Distribution Server builds an email notification that the user's order has been fulfilled. This notification includes the media ID, type and format of the request, UR, type and file names and sizes for each granule as well as a DAAC configurable preamble. The notification will include checksum information for a DAAC configured list of users. | | C.23.2 | Send E-mail | EcDsDist
ributionS
erver | MODIS IT | E-mail | The Data Distribution Server sends the distribution notice to the user as determined from the Order via email. If this distribution notice fails, the notice is sent to a pre-configured default Email address for DAAC Distribution Technician parsing and forwarding. | ### 3.7.7 ASTER QA Metadata Update Thread This thread shows how the ECS supports updating the QA metadata of a specified granule. ## 3.7.7.1 ASTER QA Metadata Update Thread Interaction Diagram - Domain View Figure 3.7.7.1-1 depicts the ASTER QA Metadata Update Interaction. Figure 3.7.7.1-1. ASTER QA Metadata Update Interaction Diagram ### 3.7.7.2 ASTER QA Metadata Update Thread Interaction Table - Domain View Table 3.7.7.2-1 provides the Interaction - Domain View: ASTER QA Metadata Update. Table 3.7.7.2-1. Interaction Table - Domain View: ASTER QA Metadata Update (1 of 2) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precond
itions | Description | |------|--------------|---------------------|---------------------------------------|----------------|---------------------------|---| | D.1 | View
Data | Science
User | EOSView | None | None | Upon notification that the AST_08 has been placed on their workstation, the Scientist views the AST_08 data with EOSView. | | D.2 | Call
DAAC | Science
User | DAAC
Science
Data
Specialist | None | None | The Scientist QA's the produced data. He/She notifies the DAAC, informing the DAAC Science Data Specialist that the granule's QA flags should be updated. | Table 3.7.7.2-1. Interaction Table - Domain View: ASTER QA Metadata Update (2 of 2) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precond
itions | Description | |------|------------------------------|---------------------------------------|------------------------|----------------|---------------------------|---| | D.3 | Update
QA
Metada
ta | DAAC
Science
Data
Specialist | DPS
(QA
Monitor) | None | None | The DAAC Science Data Specialist uses the QA Monitor tool to update the Science QA metadata of the granule. | | D.4 | Update | DPS
(QA
Monitor) | DSS
(SDSRV) | None | None | The QA Monitor invokes the Update service offered by the Science Data Server on the granule. The QA Monitor passes the Scientist's requested QA values to the DSS for permanent updating of the granule's metadata. | ## 3.7.7.3 ASTER QA Metadata Update Thread Component Interaction Table Table 3.7.7.3-1 provides the Component Interaction: ASTER QA Metadata Update. Table 3.7.7.3-1. Component Interaction Table: ASTER QA Metadata Update (1 of 2) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|---------------------------------|---------------------------------------|----------------------------|--------------------|--| | D.1.1 | Invoke
EOSView | Science
User | EOSView | Command | A Science User begins the EOSView application. The user double clicks the EOSView icon. | | D.1.2 | Display
AST_08
Data | Science
User | EOSView | GUI | The Science User specifies which file to display and sets visualization parameters. The data file is now displayed for the user. | | D.3.1 | Invoke
DAAC
QA
Monitor | DAAC
Science
Data
Specialist | EcDpPrQ
aMonitorG
UI | Command | The DAAC Science Data Specialist begins the QA Monitor application. | | D.3.2 | Establish
QA
values | DAAC
Science
Data
Specialist | EcDpPrQ
aMonitorG
UI | GUI | The DAAC Science Data Specialist establishes the updated values for selected metadata fields, for the selected granules. Granules are selected by data type and temporal range. The fields to update are hard wired. | Table 3.7.7.3-1. Component Interaction Table: ASTER QA Metadata Update (2 of 2) | Step | Event | Interface | Interface | Interface | Description | |-------|---|---------------------------------------|-------------------------------|-------------------|---| | Otop | LVCIII | Client | Provider | Mech. | Безоприон | | D.3.3 | Connect
to
SDSRV | EcDpPrQ
aMonitor
GUI | EcDsSci
enceData
Server | CCS
Middleware | The QA Monitor begins a session with the Science Data Server by connecting to find granules to be updated. The correct Science Data Server is determined by using the Server UR indicated in the configuration, based on data type. This is pertinent if there are multiple Science Data Servers in use at one DAAC in one mode. | | D.3.4 | SDSRV
Query | EcDpPrQ
aMonitor
GUI | EcDsSci
enceData
Server | CCS
Middleware | QA Monitor builds a DsClQuery object. This object is handed to the Search interface of the DsCl ESDT ReferenceCollector. This Search method is synchronous, so the results of the search are returned to the calling function. After the search, the QA Monitor receives a list of URs. Then it does an "Inspect" to the Science Data Server to get the metadata. It first performs a GetQueryableParameter to determine all attributes associated with each granule. | | D.3.5 | Request
Metadata | EcDsSci
enceData
Server | Sybase
ASE/SQ
S | CtLib | The Science Data Server breaks down the query object and translates it into a sequence of calls to the inventory database. Resultant rows are converted into data granules, each with their metadata extracted from the database. These results are packaged and returned to the Query client. | | D.3.6 | Inspect
Granule
Value
Paramete
rs | EcDpPrQ
aMonitor
GUI | EcDsSci
enceData
Server | CCS
Middleware | The QA Monitor inspects each resultant granule for the values of displayed metadata fields. | | D.3.7 | Select
granules
to update | DAAC
Science
Data
Specialist | EcDpPrQ
aMonitor
GUI | GUI | The DAAC Science Data Specialist selects granules for updating. |
 D.4.1 | Update
Granule
metadata | EcDpPrQ
aMonitor
GUI | EcDsSci
enceData
Server | CCS
Middleware | The QA Monitor submits an update request for the granules to be updated (one granule at a time). The structure of the Update request is hard-coded. | | D.4.2 | Update a metadata inventory | EcDsSci
enceData
Server | Sybase
ASE/SQ
S | CtLib | The Science Data Server updates the metadata inventory attributes for the granules being updated. | ### 3.7.8 ASTER On-Demand High Level Production Thread From the EDG This thread shows how the ECS supports users request for On-Demand High Level production through the EDG. The ASTER On Demand High Level Processing scenario occurs every time a user places a request for one of the pre-defined set of ASTER High Level Products. The user may want to produce a high level product with a different set of parameters or use a Standard L1B granule as starting input. In either case, the user selects the granule to be used and/or the additional parameters to generate the High Level product. Then the user submits a request for the system to create this High Level product. # 3.7.8.1 ASTER On-Demand High Level Production Thread Interaction Diagram - Domain View Figure 3.7.8.1-1 is the ASTER On-Demand High Level Production Interaction diagram. Figure 3.7.8.1-1. ASTER On-Demand High Level Production Interaction Diagram # 3.7.8.2 ASTER On-Demand High Level Production Thread Interaction Table - Domain View Table 3.7.8.2-1 provides the Interaction - Domain View: ASTER On-Demand High Level Production. Table 3.7.8.2-1. Interaction Table - Domain View: ASTER On-Demand High Level Production (1 of 4) | Step | Event | Interface | Interface | Data | Step | Description | |------|-----------------------------|-------------------|-------------------|--------|---------------|---| | | | Client | Provider | Issues | Preconditions | 2000 | | E.1 | Inventory
Search | Science
User | EDG | None | None | A Scientist searches the ECS holdings for ASTER products that are over his/her area of study. | | E.2 | Search | EDG | DMS (V0
GTWAY) | None | None | The EDG submits the Science User's search criteria to the V0 Gateway in ODL format, via a specific socket. | | E.3 | Search | DMS (V0
GTWAY) | DSS | None | None | The V0 Gateway translates the Search criteria from ODL to a query object (using GIParameters), and submits that query to the Search service. | | E.4 | Return
Search
Results | DSS | DMS (V0
GTWAY) | None | None | The DSS returns search results to the V0 Gateway. | | E.5 | Retrieve
URLs | DMS (V0
GTWAY) | DPL | None | None | The V0 Gateway sends a request for URLs to the Data Pool Subsystem. | | E.6 | Retrieve
Media | DMS (V0
GTWAY) | CSS
(Registry) | None | None | The results of this Search are returned synchronously. The media options are returned from the CSS Registry Server and the results are passed back to the EDG, which displays them to the Science User. | | E.7 | Return
Search
Results | DMS (V0
GTWAY) | EDG | None | None | The V0 Gateway returns search results with media options to the EDG. | Table 3.7.8.2-1. Interaction Table - Domain View: ASTER On-Demand High Level Production (2 of 4) | | Production (2 of 4) | | | | | | | | | |------|---|---------------------|-----------------------|---|-----------------------|---|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Data Issues | Step
Preconditions | Description | | | | | E.8 | Return
Search
Results | EDG | Science
User | None | None | The EDG returns search results to the User. | | | | | E.9 | Submit On-
Demand
Request | Science
User | EDG | None | None | The scientist desires a product that does not exist in the archive. He/she picks the URs of the inputs and creates an On-demand Production Request via the EDG. | | | | | E.10 | On-Demand
Request | EDG | DMS (V0
GTWAY) | This interface is actually accomplished via a synchronous ODL message | None | All the user's selections for the On-demand production request are passed to the V0 Gateway. | | | | | E.11 | Create MSS Order Tracking Elements Initialize status to "Pending" | DMS (V0
GTWAY) | MSS | None | None | The V0 Gateway creates order-tracking elements. | | | | | E.12 | On-Demand
Order | DMS (V0
GTWAY) | PLS | None | None | The V0 Gateway passes the on-demand order to the PLS with orderld and requestID. | | | | | E.13 | Initialize
Status (to
"Queued") | PLS | MSS | None | None | The status of the On-
demand request is
initialized to "Queued." | | | | | E.14 | Order/Req
Status
returned | PLS | DMS (V0
GTWAY) | None | None | The order status and request status are returned to the V0 Gateway. | | | | | E.15 | Send
Order/req
status | DMS (V0
GTWAY) | EDG | None | None | The V0 Gateway sends order status back to the EDG. | | | | | E.16 | Order
Confirmation | EDG | Science
User | None | None | The EDG notifies the science user the request has been submitted. | | | | Table 3.7.8.2-1. Interaction Table - Domain View: ASTER On-Demand High Level Production (3 of 4) | | Production (3 of 4) | | | | | | | | | |----------|--|---------------------|-----------------------|-------------|-----------------------|---|--|--|--| | Ste
p | Event | Interface
Client | Interface
Provider | Data Issues | Step
Preconditions | Description | | | | | E.17 | Subscribe | PLS | CSS
(SBSRV) | None | None | The PLS places subscriptions on those inputs that have not been archived. The PLS also places a subscription on the output products desired by the user. | | | | | E.18 | Process
request to
high level
order | PLS | PLS | None | None | Process the request to a higher-level order. | | | | | E.19 | Submit
DPRs | PLS
(ODPRM) | DPS | None | None | DPR(s) for PGEs to produce the requested products are created and submitted to the DPS. | | | | | E.20 | Update
Status (to
"Waiting for
Data") | PLS | MSS | None | None | The PLS sets the status of the On-demand request to "Waiting for Data." | | | | | E.21 | Subscription
Notification | CSS
(SBSRV) | PLS | None | None | The CSS notifies the PLS when data is available in the archive by a subscription notification. | | | | | E.22 | Release Job | PLS | DPS | None | None | Once all inputs are available to run the PGE, references to those input granules are passed to the DPS, and the jobs that make up the Ondemand Production Request are released. | | | | | E.23 | Update
Status (to
"Being
Processed") | DPS | MSS | None | None | The DPS updates the status of the On-demand request as it marches through the various stages of processing. | | | | | E.24 | Acquire
Data | DPS | DSS | None | None | The DPS submits an acquire request for input granules, via FtpPush, for input to PGEs. | | | | | E.25 | Run PGE | DPS | DPS | None | None | The PGEs run, creating the desired products. | | | | Table 3.7.8.2-1. Interaction Table - Domain View: ASTER On-Demand High Level Production (4 of 4) | | Production (4 or 4) | | | | | | | | |------|------------------------------|---------------------|-----------------------|----------------|-----------------------|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Preconditions | Description | | | | E.26 | Request
Data Insert | DPS | DSS | None | None | Archive the newly created product granules. Note that if the PGE run was a precursor PGE (meaning a PGE that has to be run for the inputs of the PGE that actually produces the desired product) then the DPS inserts the granule such that it is deleted in a configurable time period. | | | | E.27 | Trigger
Event | DSS | CSS
(SBSRV) | None | None | Trigger insert of desired product data. Since the PLS placed the subscription for the desired product, then the PLS receives the Subscription Notification (as in step E.21). | | | | E.28 | Subscription
Notification | CSS
(SBSRV) | PLS | None | None | The CSS notifies the PLS when data is available in the archive by a subscription notification. | | | | E.29 | User
Acquire | PLS | DSS | None | None | The PLS submits a "user acquire" request, to request that DSS transfers the product(s) to the user who made the On-demand request. | | | | E.30 | User Data
Distribution | DSS | Science
User | None | None | The DSS acquires the data for the user. It is sent via Ftp or placed on the requested media. | | | | E.31 | Completion
Notice | PLS | Science
User | None | None | Send email notification to
the Science User, notifying
that the requested
product(s) has been
produced. | | | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (1 of 14) | | | | riou | , | | |-------|---|----------------------------|-------------------------------|---------------------
--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | E.1.1 | Startup EDG | Science
User | Netscape | Command | A Science User invokes a Netscape browser and navigates to the EOS Data Gateway home page. | | E.1.2 | Select
Inventory
Search,
Provide
Query
constraints,
Submit
Query | Science
User | Netscape | GUI | The Science User provides search constraints and the products desired. When query constraints are completed, the query is submitted. | | E.2.1 | V0 GTWAY
Inventory
Search | Netscape | EcDmV0
ToEcsGa
teway | ODL, over sockets | The EOS Data Gateway submits a search to the V0 Gateway, by converting the search criteria into an Object Description Language (ODL) structure and passing that structure to a socket provided by the gateway. The correct socket is determined from configuration information contained in the Valids file. | | E.3.1 | Establish
ECS User | EcDmV0
ToEcsGa
teway | EcMsAc
RegUser
Srvr | CCS
Middleware | The V0 Gateway retrieves the User Profile using ECS Authenticator from the ODL message, which includes an encrypted User ID and Password. The User Registration database is replicated across DAACs, so the connection is made to the local User Registration Server. | | E.3.2 | Request
Attribute
Mapping | EcDmV0
ToEcsGa
teway | EcDmDic
tServer | CtLib
(RWDBTool) | The V0 Gateway translates the V0 terms from ODL into ECS names for query submittal. The interface is directly to the Data Dictionary database. The database name is retrieved from a configuration file. | | E.3.3 | Connect to SDSRV | EcDmV0
ToEcsGa
teway | EcDsSci
enceData
Server | CCS
Middleware | The V0 Gateway first connects to the Science Data Server. The correct Science Data Server is determined from the configuration information. | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (2 of 14) | | 1 _ | T | Proa | 1 | | |-------|-----------------------------------|-------------------------------|-------------------------------|----------------------|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | E.3.4 | SDSRV
Query | EcDmV0
ToEcsGa
teway | EcDsSci
enceData
Server | CCS
Middleware | The V0 Gateway translates the query into a DsClQuery object. This object is handed to the Search interface of the DsCl Earth Science Data Type (ESDT) ReferenceCollector. This Search method is synchronous, so the results of the search are returned to the calling function. After the search, the V0 Gateway receives a list of URs. Then it does an "Inspect" to the Science Data Server to get the metadata. It first performs a GetQueryableParameter to determine all attributes associated with each granule. | | E.3.5 | Request
Metadata | EcDsSci
enceData
Server | Sybase/S
QS | CtLib | The Science Data Server breaks down the Query object and translates it into a sequence of calls to the inventory database. The resultant rows are converted into data granules, each with their metadata extracted from the database. These results are packaged and returned to the Query client. | | E.3.6 | Result
Retrieval | Netscape | EcDmV0
ToEcsGa
teway | ODL, over
Sockets | When the V0 Gateway gets the results, they are translated into ODL, and passed back to the EDG. The correct socket for sending results to the EDG is the one used to submit the query. The EDG then displays the results of the query to the user. | | E4.1 | Return
Search
Result | EcDsSci
enceData
Server | EcDmV0
ToEcsGa
teway | CCS
Middleware | The Science Data Server returns the matched granules (URs) to the V0 Gateway. | | E.5.1 | Retrieve
URLs | EcDmV0
ToEcsGa
teway | Sybase | Ctlib | The V0 Gateway sends a request to the Data Pool for the URLs of the granules to be retrieved. | | E.6.1 | Retrieve
Media | EcDmV0
ToEcsGa
teway | EcCsReg
istry | CCS
Middleware | The V0 Gateway retrieves the media options from the Registry Server. The media options are translated into ODL, and the ODL is put into the search result. | | E.6.2 | Retrieve
Subsetting
Options | EcDmV0
ToEcsGa
teway | EcCsReg
istry | CCS
Middleware | The V0 Gateway retrieves the subsetting options from the Registry Server. The subsetting options are translated into ODL, and the ODL is put into the search results. | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (3 of 14) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |--------|---------------------------------|------------------------|------------------------|---------------------|--| | E.7.1 | Return
Search
Results | EcDmV0To
EcsGateway | EDG | ODL, over
Socket | The V0 Gateway returns the granule with their media options and subsetting options back to the EDG. | | E.8.1 | Return
Search
Results | EDG | Science
User | Web Page | The EDG returns the result back to the science users in the forms of HTML pages. | | E.9.1 | Submit On-
Demand
Request | Science
User | EDG | Web Page | The Science User makes a selection for his/her desired product(s) on the EDG. When finished, the user submits his/her request. | | E.10.1 | Create On-
Demand
Form | EcDmV0To
EcsGateway | EcDmV0To
EcsGateway | None | The V0 Gateway creates the user request(s) in the form of a GI Parameter List. | | E.10.2 | Pass On-
demand
Form | EcDmV0To
EcsGateway | EcPlOdMgr
(ODPRM) | CCS
Middleware | The V0 Gateway makes call to the On-Demand Production Request Manager (ODPRM) and passes the GI Parameter List, which has the user request, on to the ODPRM. | | E.10.3 | Return
Order ID | EcPlOdMgr
(ODPRM) | EcDmV0To
EcsGateway | CCS
Middleware | The ODPRM generates an order ID for the user request and passes it back to the V0 Gateway. | | E.10.4 | Connect to
SBSRV | EcPlOdMgr
(ODPRM) | EcSbSubSe
rver | CCS
Middleware | The ODPRM connects to the subscription server to subscribe for notification of new desired input granules. The correct Subscription Server is determined from the subscribe advertisement. | | E.10.5 | Submit
Subscription | EcPlOdMgr
(ODPRM) | EcSbSubSe
rver | CCS
Middleware | Submit the subscription to the Subscription Server. This is accomplished with the EcClSubscription interface class. | | E.10.6 | Store a
Subscription | EcSbSubSe
rver | Sybase | CtLib | The Subscription is stored in the Sybase Database. | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (4 of 14) | Production (4 of 14) | | | | | | | | | |----------------------|---|------------------------------------|---------------------------|--------------------|--|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | | E.10.7 | Connect to
SDSRV | EcPlOdMgr
(ODPRM) | EcDsScienc
eDataServer | CCS
Middleware | Looking for input granules for the PGE, the ODPRM first connects to the Science Data Server. The correct Science Data Server is identified from information retrieved from the PDPS database (PISdsrvString table). | | | | | E.10.8 | SDSRV
Query | DpPrDssIF
(Library
Function) | EcDsScienc
eDataServer | CCS
Middleware | The DpPrDssIF creates an IF object to connect with the Science Data Server and performs the query. | | | | | E.10.9 | Request
Metadata | EcDsScienc
eDataServer | Sybase/SQ
S | CtLib | The Science Data Server breaks down the query object and translates it into a sequence of calls to the inventory database. The resultant rows are converted into data granules, each with their metadata extracted from the database. These results are packaged and returned to the query client. | | | | | E.10.1
0 | Inspect
Granule
Value
Parameters | EcPlOdMgr
(ODPRM) | EcDsScienc
eDataServer | CCS
Middleware | The ODPRM checks the granule's metadata attributes (type, version, file size and temporal range) to establish job dependencies. References to desired granules are packaged in the DPRs. | | | | | E.11.1 | Create MSS
Order
Tracking
Elements | EcDmV0To
EcsGateway | AutoSys | CCS
Middleware | The MSS order-tracking elements are created. | | | | | E.12.1 | On-Demand
Order | EcDmV0To
EcsGateway | EcPlOdMgr | CCS
Middleware | The V0 Gateway sends the GIParameterList, the orderID, reqID to the On-demand Production Request Manager. | | | | | E.13.1 | Initialize
Status (to
"Queued") | EcPlOdMgr | AutoSys |
CCS
Middleware | The status of the on-demand request is initialized to "Queued." | | | | | E.14.1 | Order/Req
Status
returned | EcPlOdMgr | EcDmV0To
EcsGateway | CCS
Middleware | The On-demand Production Request Manager returns the order status and request status back to the V0 Gateway. | | | | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (5 of 14) | | Production (5 of 14) | | | | | | | | | |--------|--|-----------------------|-----------------------|--------------------|--|--|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | | | E.15.1 | Send Order status | EcDmV0To
EcsGatway | EDG | ODL | The V0 Gateway sends the order/request status back to the EDG. | | | | | | E.16.1 | Order
Confirmation | EDG | Science
User | Web Page | The EDG returns a web page to the science user with the order/request status of the request. | | | | | | E.17.1 | Connect to
SBSRV | EcPlOdMgr
(ODPRM) | EcSbSubSe
rver | CCS
Middleware | The On-demand Production Request Manager (ODPRM) connects to the subscription server to subscribe for notification of new desired output granules. | | | | | | E.17.2 | Submit
Subscription | EcPlOdMgr
(ODPRM) | EcSbSubSe
rver | CCS
Middleware | Submit the subscription to the Subscription Server. This is accomplished with the EcClSubscription interface class. | | | | | | E.17.3 | Store a
Subscription | EcSbSubSe rver | Sybase | Ctlib | The subscription is stored in the Sybase Database. | | | | | | E.18.1 | Process request | EcPlOdMgr | EcPlOdMgr | None | The ODPRM processes the request to a higher-level order. | | | | | | E.19.1 | Create DPR | EcPlOdMgr | EcDpPrJob
Mgmt | CCS
Middleware | The ODPRM sends to the DPS the DPRID, a list of predecessor DPRs, and whether the DPR is waiting for external data. | | | | | | E.20.1 | Update
Status (to
"Waiting for
Data") | EcPlOdMgr
(ODPRM) | AutoSys | CCS
Middleware | The status of the on-demand request is updated to "Waiting for Data." | | | | | | E.21.1 | Subscription
Notification | EcSbSubSe rver | EcPlSubMgr | CCS
Middleware | The subscriptions are submitted for each data type individually. | | | | | | E.22.1 | Release Job | EcPlOdMgr | EcDpPrJob
Mgmt | CCS
Middleware | The ODPRM tells the Job Manager to release the on-demand job, using the appropriate input granules. | | | | | | E.22.2 | Submit
DPRs | EcDpPrJob
Mgmt | AutoSys | JIL | The DPR (containing the BTS PGE) in the updated plan is submitted to the AutoSys. | | | | | | E.22.3 | Force Start
Job | EcDpPrJob
Mgmt | Event_daem on | CCS
Middleware | The on-demand Job is released. | | | | | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (6 of 14) | | Production (6 of 14) | | | | | | | | | |--------|--|-------------------------------|-------------------------------|--------------------|--|--|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | | | E.22.4 | Initiate Job
Processing | Event_dae
mon | EcDpPrEM | Command line | The on-demand job begins processing. | | | | | | E.22.5 | Connect to
SDSRV | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The Data Processing Execution Manager (DPEM) begins a session with the Science Data Server by connecting to acquire the on-demand PGE. The correct Science Data Server is identified from information retrieved from the PDPS database (PISdsrvString table). | | | | | | E.22.6 | Add PGE
granule's
UR to
Session | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The DPEM establishes the data context of the session with the Science Data Server by adding the PGE granule's UR to the ESDT ReferenceCollector. | | | | | | E.22.7 | Retrieve
Granule
Metadata
from
Inventory | EcDsScien
ceDataSer
ver | Sybase/SQ
S | CtLib | The Science Data Server completes establishing the data context by retrieving the metadata for the requested PGE granule from the Sybase/SQS database. The metadata for the PGE granule is passed back to the reference objects for each granule. | | | | | | E.22.8 | Acquire
Data | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middleware | The DPEM requests granules by submitting an acquire request for the PGE granule. The acquire request is for an FtpPush of all granules in the ESDT ReferenceCollector. This request is synchronous, meaning the return of the submit call of the request contains the results of the request. This means the response is not sent until the PGE granule files have been transferred (via the Ftp service) to the DPS disks. This request asks for no distribution notice to be emailed. The acquire request structure is hard-coded. | | | | | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (7 of 14) | | Troduction (1 of 14) | | | | | | | | |---------|--|--------------------------------|--|--------------------|---|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | | E.22.9 | Create
Staging
Disk | EcDsScie
nceDataS
erver | EcDsStSt
agingDis
kServer | CCS
Middleware | The Science Data Server verifies access privileges for the granule and creates a staging disk for the metadata file, which allocates space and passes back a reference to that disk space. The amount of staging disk to request is determined by the size of the metadata file. | | | | | E.22.10 | Create
Metadata
file | EcDsScie
nceDataS
erver | EcDsSci
enceData
Server | CCS
Middleware | The Science Data Server creates a file containing the PGE granule's metadata before passing it to the Data Distribution Server. | | | | | E.22.11 | Distribute
Granules,
Synchron
ous | EcDsScie
nceDataS
erver | EcDsDist
ributionS
erver | CCS
Middleware | The Science Data Server submits a request to Data Distribution Server. The request includes, for each granule, a reference to the metadata file as well as all data files. Other parameters from the acquire request are passed to the Data Distribution Server. | | | | | E.22.12 | Create
Staging
Disk | EcDsDistri
butionSer
ver | EcDsStR
equestM
anagerS
erver | CCS
Middleware | The Data Distribution Server creates staging disk for the granule files in the archive. This allocates space and passes back a reference to that disk space. The correct staging disk server is determined from the information passed by the Science Data Server in the distribution request, which was the Science Data Server configuration. The amount of staging disk to request is determined by the size of the metadata file. | | | | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (8 of 14) | | Т | T | Froducti | ion (8 of 1 | 14) | |-------------|----------------------------------|--------------------------------|------------------------------------|-----------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | E.22.1
3 | STMGT
Retrieve | EcDsDistri
butionServ
er | EcDsStReq
uestManag
erServer | CCS
Middlewa
re | The Data Distribution Server requests that Storage Management retrieve the archived PGE granule file. This results in the file being staged to read-only cache disks. STMGT will verify the checksum for a configurable percentage of the files that have one. This means that all files needed to fulfill the distribution request are in read only cache and ready to be linked. The correct archive object to request is determined from the information provided by the Science Data Server in the distribution request. Locating the files may use the observation date when archive tape placement is optimized based on date. This returns references to the files in the read-only cache. | | E.22.14 | Link files
to Staging
Disk |
EcDsDistri
butionServ
er | EcDsStReq
uestManag
erServer | CCS
Middlewa
re | The Data Distribution Server links the files from the read-only cache into the staging disk. | | E.22.15 | Claim
Ownership | EcDsDistri
butionServ
er | EcDsStReq
uestManag
erServer | CCS
Middlewa
re | The Data Distribution Server claims ownership of the staging disk created by the Science Data Server by sending a request to the Storage Management Request Manager. | | E.22.16 | Link files
to Staging
Disk | EcDsDistri
butionServ
er | EcDsStReq
uestManag
erServer | CCS
Middlewa
re | The Data Distribution Server links the metadata files from the Science Data Server's staging disk into the Storage Management staging disk. | | E.22.17 | FtpPush
Files | EcDsDistri
butionServ
er | EcDsStReq
uestManag
erServer | CCS
Middlewa
re | The Data Distribution Server now creates the Resource manager for Ftp Pushes via a Resource Manager Factory. The correct resource manager is determined from the media type handed to the resource factory (FtpPush, in this case). The correct FTP Server is determined from the configuration within the resource factory. The files, host, location, user name and password are all determined from the information provided in the original acquire request. | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (9 of 14) | Froduction (9 of 14) | | | | | | | | | |----------------------|--|-------------------------------|---|--------------------|---|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | | E.22.1
8 | Ftp Files | EcDsStFtp
Server | Operatin
g System
Ftp
daemon
(EcDpPr
EM) | Ftp | The FTP Server performs the actual Ftp of the PGE files via the Operating System Ftp daemon to the DPS. | | | | | E.23.1 | Update
Status | EcDpPrEM | EcMsAc
OrderSrv
r | CCS
Middleware | The Data Processing Execution Manager (DPEM) updates the status as the PGE(s) go through the various states. The status of each On-demand PGE goes from "Waiting for Data" to "Waiting for Processing Resources" to "Started Processing" to "Completed." | | | | | E.24.1 | Connect to
SDSRV | EcDpPrEM | EcDsSci
enceData
Server | CCS
Middleware | The DPEM begins a session with the Science Data Server by connecting. The correct Science Data Server is identified from information retrieved from the PDPS database (PISdsrvString table). | | | | | E.24.2 | Add PGE
granule's UR
to Session | EcDpPrEM | EcDsSci
enceData
Server | CCS
Middleware | The Data Processing Execution Manager (DPEM) establishes the data context of the session with the Science Data Server by adding the input granules to the session. The granule UR of the input granule is added to the ESDT ReferenceCollector. Note that this sequence is performed for each input granule, one at a time. | | | | | E.24.3 | Retrieve
Granule
Metadata
from
Inventory | EcDsScien
ceDataSer
ver | Sybase/S
QS | CtLib | The Science Data Server completes establishing the data context by retrieving the metadata for the requested granule from the Sybase/SQS database. The metadata for each granule is passed back to the reference objects for each granule. | | | | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (10 of 14) | - | Production (10 of 14) | | | | | | | | |--------|--|--------------------------------|--|--------------------|--|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | | E.24.4 | Acquire Data | EcDpPrE
M | EcDsSci
enceData
Server | CCS
Middleware | The DPEM requests granules by submitting an acquire request for those granules. The acquire request is for an FtpPush of all granules in the ESDT ReferenceCollector. This request is synchronous (meaning the return of the submit call of the request contains the results of the request). This means the response is not sent until the granule files have been transferred (via the Ftp service) to the DPS disks. This request asks for no distribution notice to be emailed. The acquire request structure is hard-coded. | | | | | E.24.5 | Create
Staging Disk | EcDsScie
nceDataS
erver | EcDsStR
equestM
anagerS
erver | CCS
Middleware | The Science Data Server verifies access privileges for the granule and creates a staging disk for metadata files, which allocates space and passes back a reference to that disk space. The amount of staging disk to request is determined by the size of the metadata file. | | | | | E.24.6 | Create
Metadata file | EcDsScie
nceDataS
erver | EcDsSci
enceData
Server | CCS
Middleware | For each granule referenced in the acquire request, the Science Data Server creates a file containing the granule's metadata before passing to the Distribution Server. | | | | | E.24.7 | Distribute
Granules,
Synchronous | EcDsScie
nceDataS
erver | EcDsDist
ributionS
erver | CCS
Middleware | The Science Data Server submits a request to the Distribution Server. The request includes, for each granule, a reference to the metadata file as well as all data files. Other parameters from the acquire request are passed to the Data Distribution Server. | | | | | E.24.8 | Create
Staging Disk | EcDsDistri
butionSer
ver | EcDsStR
equestM
anagerS
erver | CCS
Middleware | The Data Distribution Server creates staging disks for the granule files in the archive. This allocates space and passes back a reference to that disk space. The correct staging disk server is determined from the information passed by the Science Data Server in the distribution request, which was the Science Data Server configuration. The amount of staging disk to request is determined by the size of the metadata file. | | | | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (11 of 14) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |---------|----------------------------------|----------------------------|------------------------------------|--------------------|---| | E.24.9 | STMGT
Retrieve | EcDsDistrib
utionServer | EcDsStRequ
estManagerS
erver | CCS
Middleware | The Data Distribution Server requests that Storage Management retrieve the archived granule file. This results in the file being staged to read-only cache disks. STMGT will verify the checksum for a configurable percentage of the files that have one. This means that all files needed to fulfill the distribution request are on disk, and ready to be linked. The correct archive object to request is determined from the information provided by the Science Data Server in the distribution request. Locating the files may use the observation date when archive tape placement is optimized based on date. This returns references to the files in the read-only cache. | | E.24.10 | Link files
to Staging
Disk | EcDsDistrib
utionServer | EcDsStRequ
estManagerS
erver | CCS
Middleware | The Data Distribution Server links the files from the read-only cache into the staging disk. | | E.24.11 | Claim
Ownershi
p | EcDsDistrib
utionServer | EcDsStRequ
estManagerS
erver | CCS
Middleware | The Data Distribution Server claims ownership of the staging disk created by the Science Data Server by sending a request to the Storage Management Request Manager. | | E.24.12 | Link files
to Staging
Disk | EcDsDistrib
utionServer | EcDsStStagi
ngDiskServer | CCS
Middleware | The Data Distribution Server links the metadata files from the Science Data Server's staging disk into the Storage Management staging disk. | | E.24.13 | FtpPush
Files | EcDsDistrib
utionServer | EcDsStRequ
estManagerS
erver | CCS
Middleware | The Data Distribution Server now creates the Resource manager for Ftp Pushes via a Resource Manager Factory. The correct resource manager is determined from the media type handed to the resource factory (FtpPush, in this case). The correct FTP Server is determined from the configuration within the resource factory. The files, host, location, username and password
are all determined from the information provided in the original acquire request. | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (12 of 14) | Step | Event | Interface | Interface | Interface | Description | |---------|--|---------------------|---|-----------------------|--| | | | Client | Provider | Mech. | | | E.24.14 | Ftp Files | EcDsStFtp
Server | Operating
System Ftp
daemon
(EcDpPrE
M) | Ftp | The FTP Server performs the actual Ftp of the files via the Operating System Ftp daemon to the DPEM. | | E.25.1 | Request
Metadata
Configuration
File | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middlewar
e | The DPEM gets the metadata configuration file of the output data's ESDT. Data type and version are from the PDPS database, correct client name is from the configuration file. | | E.25.2 | Run PGE | EcDpPrRu
nPGE | PGE | Command line | The PGE is executed. Output files are placed in the output directory. The directory path is established by using a root, which was established by configuration, and the specific directory by the job ID. This disk root is crossmounted by DPS with the Science Data Server and Storage Management CSCIs. This is to ensure they are directly available to the DSS for archival. | | E.26.1 | Connect to
SDSRV | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middlewar
e | The DPEM begins a session with the Science Data Server by connecting. | | E.26.2 | Request Data
Insert | EcDpPrEM | EcDsScien
ceDataSer
ver | CCS
Middlewar
e | The Data Processing Execution Manager requests that the newly created files for the output granule are inserted into the Data Server. An insert request, containing the names of the files comprising the granule, is created for each granule. The structure of the insert request is hard-coded. The Science Data Server validates metadata and determines the archived names of the files. Note that these inserts occur one granule at a time. | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (13 of 14) | | Production (13 of 14) | | | | | | | | | |--------|--------------------------------------|---------------------------|------------------------------------|------------------------------|--|--|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface Mech. | Description | | | | | | E.26.3 | STMGT
Store | EcDsScience
DataServer | EcDsStRequ
estManagerS
erver | CCS Middleware | The Science Data Server requests that the files be archived. The archive server must be able to read the inserted files directly from the DPS disks they are residing on. Files may be directed to different tapes based on observation time to optimize tape usage. STMGT will calculate a checksum for a configurable percentage of files that do not yet have one. STMGT will verify the checksum value for the files based on the ChecksumonIngest flag. | | | | | | E.26.4 | Adding a
Granule to
Inventory | EcDsScience
DataServer | Sybase/SQS | CtLib | The validated metadata is parsed and added to the inventory of the Science Data Server, this includes checksum information when available. | | | | | | E.27.1 | Trigger
Event | EcDsScience
DataServer | EcSbSubSer
ver | CCS Middleware | Upon successful insertion of AST_04 the AST_04:Insert event is triggered. The correct subscription server is determined from the Science Data Server configuration. Provided with the event triggering is the UR of the inserted granule. | | | | | | E.27.2 | Retrieve
Subscripti
ons | EcSbSubServ
er | Sybase | CtLib | The Subscription Server queries the Sybase database determining which subscriptions need to be activated or fired. Each query "hit" is an activated subscription and executes independently. | | | | | | E.28.1 | Subscripti
on
Notificatio
n | EcSbSubServ
er | EcPlSubMgr | Message Passing
Mechanism | The subscriptions are submitted for each data type individually. | | | | | | E.29.1 | User
Acquire | EcPlOdMgr
(ODPRM) | EcDsScience
DataServer | CCS Middleware | The On-Demand Production Request Manager (ODPRM) receives the subscription notification and sends a request to the Science Data Server to distribute the on-demand product to the requester. | | | | | Table 3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production (14 of 14) | Step | Event | Interface Client | Interface
Provider | Interface
Mech. | Description | |--------|---------------------------|------------------------|-----------------------|--------------------|--| | E.30.1 | User Data
Distribution | EcDsScienceDat aServer | Science
User | Ftp | Data is sent to the user on the requested media. This can be via Ftp or it can be on tape. | | E.31.1 | Completion
Email | EcPlOdMgr
(ODPRM) | Science
User | E-mail | Email is sent from the On-Demand Production Request Manager (ODPRM) to the user indicating (after all on-demand DPRs for this request have completed) that his/her on-demand request has been satisfied. | #### 3.7.9 ASTER On-Demand Non-Standard L1B Production Thread This thread shows how the ECS supports users request for On-Demand production of non-standard L1B data products. ASTER non-standard L1B processing allows the user to request an L1B data product to be generated using nonstandard input parameters. The processing of a non-standard L1B product is conducted at the GDS in Japan. The user submits an ECS request by making use of the ODFRM On-Demand Form web page, which is supported by the CLS. This web page enables the user to choose from a list of non-standard parameters, and ECS parses the information and sends the request to GDS via the ASTER gateway. The final product is delivered on tape to the ECS from the GDS in Japan. The final product is archived at the ECS, and the user is notified regarding the final product availability. ## 3.7.9.1 ASTER On-Demand Non-Standard L1B Thread Interaction Diagram - Domain View Figure 3.7.9.1-1 depicts the ASTER On-Demand Non-Standard L1B Interaction. Figure 3.7.9.1-1. ASTER On-Demand Non-Standard L1B Interaction Diagram ## 3.7.9.2 ASTER On-Demand Non-Standard L1B Thread Interaction Table - Domain View Table 3.7.9.2-1 provides the Interaction - Domain View: ASTER On-Demand Non-Standard L1B. Table 3.7.9.2-1. Interaction Table - Domain View: ASTER On-Demand Non-Standard L1B Production (1 of 2) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondi
tions | Description | |------|---|---------------------|-----------------------|--|---------------------------|--| | F.1 | Search
(Results
returned) | Science
User | CLS
(EDG) | Results
Returned | None | The science user initiates a check to see if the non-standard L1B data is available. | | F.2 | Search
(Results
returned) | CLS
(EDG) | ECS
ASTGW | Results
Returned | None | The EDG forwards the data availability search to the ECS ASTER Gateway (ASTGW). | | F.3 | Search
(Results
returned) | ECS
ASTGW | ASTER
GDS | Results
Returned | None | The ECS ASTGW forwards the data availability search to the ASTER GDS. | | F.4 | Submit
non-
standard
L1B
Request | Science
User | CLS
(ODFRM) | The non-
standard
data is not
already
available. | None | If the non-standard L1B data is
not already available, the
scientist submits a non-
standard L1B request through
ODFRM. | | F.5 | Check
User
Authorizati
on
(Results
returned) | CLS
(ODFRM) | MSS
(MCI) | Results
Returned | None | The user's authorization is checked. | | F.6 | On-
Demand
Order | CLS
(ODFRM) | PLS
(ODPRM) | None | None | All the user selections for the On-demand Production Request are sent over to the PLS/ODPRM via CCS Middleware. A request ID generated by ODPRM is sent back to ODFRM. | | F.7 | Create MSS Order Tracking Elements | PLS
(ODPRM) | MSS
(MCI) | None | None | MSS order elements are created. | | F.8 | Initialize
Status to
"Queued" | PLS
(ODPRM) | MSS
(MCI) | None | None | PLS updates the order status in the order tracking database in MSS and sets the status to "Queued." | | F.9 | Subscribe | PLS
(ODPRM) | CSS
(SBSRV) | None | None | A subscription is placed for the non-standard L1B data. | | F.10 | Send
Request | PLS
(ODPRM) | ECS
ASTGW | None | None | An order for a non-standard L1B order is received. The message should contain all relevant
information for a L1B order. | Table 3.7.9.2-1. Interaction Table - Domain View: ASTER On-Demand Non-Standard L1B Production (2 of 2) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondi
tions | Description | |------|---|---------------------|-----------------------|--------------------------|---------------------------|--| | F.11 | Send
Request | ECS
ASTGW | ASTER
GDS | None | None | The ECS ASTGW passes the order to the ASTER GDS. | | F.12 | Update
Status (to
"Waiting for
L1B") | PLS
(ODPRM) | MSS
(MCI) | None | None | The PLS On-Demand Production Request Manager (ODPRM) updates the MSS order-tracking database to "Waiting for L1B." | | F.13 | Return Order
ID | PLS
(ODPRM) | CLS
(ODFRM) | None | None | The PLS returns the order ID to the CLS (On-Demand Product Request Form - ODFRM). | | F.14 | Order
Confirmation | CLS
(ODFRM) | Science
User | None | None | The order confirmation is sent to the science user. | | F.15 | Create Non-
Standard L1B | ASTER
GDS | ASTER
GDS | None | None | The ASTER GDS generates a non-standard L1B product according to the order e-mail received from the PLS through the ECS ASTGW. | | F.16 | Insert L1B via
Ingest (DTF
Tape) | ASTER
GDS | DSS
(SDSRV) | A DTF
Tape is
used | None | The completed non-standard AST_L1B product is inserted into the Science Data Server via Ingest utilizing the DTF Tape after it is sent via commercial shipping to the DAAC Ops. | | F.17 | Insert event | DSS
(SDSRV) | CSS
(SBSRV) | None | None | The DSS (SDSRV) notifies the CSS (Subscription Server) of the insert. | | F.18 | Subscription
Notification | CSS
(SBSRV) | PLS
(ODPRM) | None | None | The PLS Subscription Manager receives arrival notification for the L1B product and updates the PDPS internal status for the order. On- Demand Production Request Manager polls PDPS DB for the order status. | | F.19 | Update
Status (to
"L1B
Received") | PLS
(ODPRM) | MSS
(ODPRM) | None | None | The PLS On-Demand Production Request Manager updates the MSS order- tracking database with a "L1B Received" status. | | F.20 | Completion notice | PLS
(ODPRM) | Science
User | None | None | The user receives email that the processing is completed. | # 3.7.9.3 ASTER On-Demand Non-Standard L1B Thread Component Interaction Table Table 3.7.9.3-1 provides the Component Interaction: ASTER On-Demand Non-Standard L1B Production. Table 3.7.9.3-1. Component Interaction Table: ASTER On-Demand Non-Standard L1B Production (1 of 3) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|--|-------------------------------|---|--------------------|---| | F.1.1 | Startup
EDG | Science
User | iPlanet
Web
Server | Command | The Science User invokes a Netscape browser and navigates to the EOS Data Gateway home page. | | F.1.2 | Select
inventory
search,
provide
query
constraint
s, submit
query | Science
User | iPlanet
Web
Server | GUI | The Science User provides search constraints and the products desired. When query constraints are completed, the query is submitted. | | F.2.1 | Search
(Results
returned) | iPlanet
Web
Server | EcDmV0
ToEcsGa
teway | ODL, over sockets | The EDG submits a search to the V0 Gateway, by converting the search criteria into an ODL structure and passing that structure to a socket provided by the Gateway. The correct socket is determined from configuration information contained in the Valids file. | | F.3.1 | Search | EcDmV0
ToEcsGa
teway | EcDmEc
sToAster
Gateway | CCS
Middleware | A search request is sent to the ASTER Gateway. | | F.3.2 | Search
Performed | ASTER
GDS | ASTER
GDS | None | A search for the requested data is performed. | | F.3.3 | Results
returned | EcDmEc
sToAster
Gateway | EcDmV0
ToEcsGa
teway | CCS
Middleware | The results of the search are returned to the V0 Gateway. | | F.4.1 | Submit
Non-
Standard
L1B
Request | Science
User | EcClOdP
roductRe
quest
(ODFRM) | GUI | A Science User makes selection for the desired product(s) on the On-Demand Product Request Form (ODFRM) GUI. When finished the user submits his/her request. | | F.5.1 | Check
user
authorizati
on
(Results
returned) | EcClOdU
serLogin | EcAcProf
ileMgr | CCS
Middleware | The user's authorization is verified. | Table 3.7.9.3-1. Component Interaction Table: ASTER On-Demand Non-Standard L1B Production (2 of 3) | L1B Production (2 of 3) | | | | | | | | | |-------------------------|---|---|---|--------------------|---|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | | F.6.1 | On-Demand
Order | EcClOdPro
ductReque
st
(ODFRM) | EcPlOdM
gr
(ODPRM) | CCS
Middleware | The sub-steps of this process are listed in detail as Steps E.5.1-E.6.10 of the ASTER On-Demand High Level Production thread. | | | | | F.7.1 | Create MSS
Order
Tracking
Elements | EcPlOdMgr
(ODPRM) | AutoSys | CCS
Middleware | The MSS order tracking elements are created. | | | | | F.8.1 | Initialize
Status (to
"Queued") | EcPlOdMgr
(ODPRM) | AutoSys | CCS
Middleware | The status of the On-demand request is initialized to "Queued." | | | | | F.9.1 | Subscribe | EcPlOdMgr | EcSbSub
Server | CCS
Middleware | The sub steps of this process are the same as Steps E.9.1-E.9.4 of the ASTER On-Demand High Level Production thread. | | | | | F.10.1 | Send
request | EcPlOdMgr | EcDmV0T
oEcsGate
way | CCS
Middleware | An order for a non-standard L1B order is received. The message should contain all relevant information for a L1B order. | | | | | F.11.1 | Send
request | EcDmV0To
EcsGatewa
y | EcDmEcs
ToAsterG
ateway | CCS
Middleware | The ECS ASTGW passes on the order to the ASTER GDS. | | | | | F.12.1 | Update
status (to
"Waiting for
L1B") | EcPlOdMgr | EcMsAcO
rderSrvr | CCS
Middleware | The PLS updates the status to "Waiting for L1B." | | | | | F.13.1 | Order ID
Returned | EcPlOdMgr | EcClOdPr
oductReq
uest
(ODFRM) | CCS
Middleware | The order ID is returned to the On-
Demand Product Request Form
(ODFRM) from the PLS. | | | | | F.14.1 | Order
Confirmation | EcClOdPro
ductReque
st | Science
User | GUI | An order confirmation is sent by the ODFRM to the science user. | | | | | F.15.1 | Create Non-
Standard
L1B | ASTER
GDS | ASTER
GDS | None | The requested non-standard L1B data is generated at the ASTER facility in Japan. | | | | | F.16.1 | Insert L1B
via Ingest
(DTF Tape) | EcDmAster
ToEcsGate
way | EcDsScie
nceDataS
erver | Command | The DTF tape scenario, Section 3.7.5, documents the interactions for ingesting data into the Science Data Server using DTF tapes. | | | | Table 3.7.9.3-1. Component Interaction Table: ASTER On-Demand Non-Standard L1B Production (3 of 3) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |--------|--|-------------------------------|-----------------------|---------------------------------|--| | F.17.1 | Insert Event | EcDsScien
ceDataSer
ver | EcSbSub
Server | CCS
Middleware | The subscription(s) are submitted for L1B. | | F.18.1 | Subscription
Notification | EcSbSubS
erver | EcPISubM
gr | Message
Passing
Mechanism | The subscriptions are submitted for L1B. | | F.19.1 | Update
Status (to
"L1B
Received") | EcPlOdMgr | EcMsAcO
rderSrvr | CCS
Middleware | The PLS updates the status to "L1B Received." | | F.20.1 | Completion notice | EcPlOdMgr | Science
User | Email | The completion notice is sent to the user via email. | #### 3.7.10 ASTER On-Demand DEM Production Thread From the EDG This thread shows how the ECS supports user's request for On-Demand production of the Digital Elevation Model (DEM) data product. This type of processing requires the operator to produce the DEM manually at the DAAC. The user submits a request to ECS through the EOS Data Gateway. The ECS parses the request information and sends the request to the DAAC operator. After the operator finishes producing the DEM, the operator informs the ECS. DEMs are archived in the Science Data Server/Storage Management once the DAAC operator inserts them via Ingest. Once the DEM product is archived and Distribution has occurred in accordance with parameters specified in the order, the User is notified about the availability of the DEM product ### 3.7.10.1 ASTER On-Demand DEM Thread Interaction Diagram - Domain View Figure 3.7.10.1-1 is the ASTER On-Demand DEM Interaction diagram. Figure 3.7.10.1-1. ASTER On-Demand DEM Interaction Diagram ### 3.7.10.2 ASTER On-Demand DEM Thread Interaction Table - Domain View Table 3.7.10.2-1 provides the Interaction - Domain View: ASTER On-Demand DEM event descriptions. Table
3.7.10.2-1. Interaction Table - Domain View: ASTER On-Demand DEM Production (1 of 4) | | 1 | 1 | | 1011011 (1 01 4 | / | <u></u> | |------|-----------------------------|----------------------|-----------------------|-----------------|---------------------------|---| | Step | Event | Interface
Client | Interface
Provider | Data Issues | Step
Precondi
tions | Description | | G.1 | Search | Science
User | EDG | None | None | Prior to placing a new order, a search for a L1A product is conducted at the EOS Data Gateway (EDG) to determine if the data is already available. | | G.2 | Search | EDG | DMS
(V0
GTWAY) | None | None | If the search does not locate the requested data at the EDG prior to placing a new order, a search is conducted at the Data Management Subsystem (DMS) Version 0 (V0) Gateway (V0 GTWAY) to determine if the data is already available. | | G.3 | Search | DMS
(V0
GTWAY) | DSS
(SDSRV) | None | None | If the search does not locate the requested data at the V0 Gateway prior to placing a new order, a search is conducted by the Science Data Server to determine if the data is already available. | | G.4 | Return
Search
Results | DSS
(SDSRV) | DMS
(V0
GTWAY) | None | None | The Science Data Server returns search results back to the DMS V0 Gateway. | | G.5 | Retrieve
Media | DMS
(V0
GTWAY) | CSS
(Registry) | None | None | The results of this search are returned synchronously. The media options are returned from the Communications Subsystem (CSS) Registry Server and the results are passed back to the EOS Data Gateway, which displays them to the Science User. | | G.6 | Return
results back | DMS
(V0
GTWAY) | EDG | None | None | The V0 Gateway returns search results and media options back to the EOS Data Gateway (EDG). | Table 3.7.10.2-1. Interaction Table - Domain View: ASTER On-Demand DEM Production (2 of 4) | | ı | ı | 1.040 | Clion (2 01 4 | Ī | | |------|--|----------------------|-----------------------|--|---------------------------|---| | Step | Event | Interface
Client | Interface
Provider | Data Issues | Step
Precondi
tions | Description | | G.7 | Return
results | EDG | Science
User | None | None | The EOS Data Gateway returns search results back to the User. | | G.8 | Submit DEM
Request | Science
User | EDG | The requested data has not already been generated | None | The Scientist submits a Digital Elevation Model (DEM) request via the EOS Data Gateway. | | G.9 | DEM
Request | EDG | DMS
(V0
GTWAY) | This interface is actually accomplishe d via a synchronous ODL message | None | All user selections for DEM product requests are passed to the Data Management Subsystem's (DMS) V0 Gateway (V0 GTWAY). | | G.10 | Create MSS order tracking elements | DMS
(V0
GTWAY) | MSS | None | None | The order status elements in the MSS' order tracking database are created. | | G.11 | On-Demand
Order | DMS
(V0
GTWAY) | PLS | None | None | The V0 Gateway passes
the on-demand order to the
Planning Subsystem (PLS)
with an Orderld and
RequestID. | | G.12 | Initialize
Status (to
"Queued") | PLS | MSS | None | None | The order status element in the MSS' order tracking database is initialized to "Queued." | | G.13 | Subscribe | PLS | CSS
(SBSRV) | None | None | A subscription for the requested data is placed with the Communications Subsystem (CSS) Subscription Server. | | G.14 | Order and
Request
status
Returned | PLS | DMS
(V0
GTWAY) | None | None | The Order status and Request status are returned to the DMS V0 Gateway. | Table 3.7.10.2-1. Interaction Table - Domain View: ASTER On-Demand DEM Production (3 of 4) | Step | Event | Interface
Client | Interface
Provider | Data Issues | Step
Precondi
tions | Description | |------|------------------------------------|----------------------|-----------------------------|-------------|---------------------------|---| | G.15 | Send
Order/Reque
st status | DMS
(V0
GTWAY) | EDG | None | None | The V0 Gateway send order status and request status back to the EOS Data Gateway. | | G.16 | Order
Confirmation | EDG | Science
User | None | None | The EOS Data Gateway notifies the Science User that the request has been submitted. | | G.17 | Process
request to
DEM order | PLS | PLS | None | None | Process request to DEM order | | G.18 | Send
Request | PLS | DAAC
Operator | None | None | The Planning Subsystem (PLS) sends a request to the DAAC Operator. | | G.19 | Create DEM | DAAC
Operator | DAAC
Operator | None | None | The DAAC operator generates a Digital Elevation Model (DEM) product according to the order email received from the PLS. | | G.20 | Update
Metadata | DAAC
Operator | DAAC
Operator | None | None | The DAAC Operator updates the Product Specific Attribute (PSA) metadata. | | G.21 | Insert DEM
via Ingest
(SIPS) | DAAC
Operator | DSS via
Ingest
(SIPS) | None | None | The DAAC operator inserts the DEM product into the Science Data Server through the Ingest Subsystem. This is done via a "SIPS" scenario – see Section 3.11. | | G.22 | Insert Event | DSS | CSS
(SBSRV) | None | None | The DEM insert event is sent to the Communications Subsystem (CSS) Subscription Server. | Table 3.7.10.2-1. Interaction Table - Domain View: ASTER On-Demand DEM Production (4 of 4) | | | | | 000011 (4 01 4 | | | |------|---|---------------------|-----------------------|----------------|---------------------------|--| | Step | Event | Interface
Client | Interface
Provider | Data Issues | Step
Precondi
tions | Description | | G.23 | Subscription
Notification | CSS
(SBSRV) | PLS
(SubMgr) | None | None | The DEM subscription notification is sent to the PLS (Subscription Manager). The Subscription Manager updates the PDPS database according to the notification. The V0 Gateway polls the database to obtain the DEM availability. | | G.24 | Update
Status (to
"Processing
Complete") | PLS | MSS | None | None | The order status element in
the System Management
Subsystem's (MSS') order
tracking database is
updated to "Processing
Complete." | | G.25 | User Acquire | PLS | DSS
(SDSRV) | None | None | The PLS submits a "user acquire" request for the DSS' Science Data Server to transfer the product(s) to the User who made the ondemand request. | | G.26 | User Data
Distribution | DSS
(SDSRV) | Science
User | None | None | The requested DEM data is sent to the User. | ### 3.7.11 ASTER Simplified Expedited Data Support Thread This thread shows how the ECS supports a simplified version of Expedited data support. ## 3.7.11.1 ASTER Simplified Expedited Data Support Thread Interaction Diagram - Domain View Figure 3.7.11.1-1 depicts the ASTER Simplified Expedited Data Support Interaction. Figure 3.7.11.1-1. ASTER Simplified Expedited Data Support Interaction Diagram # 3.7.11.2 ASTER Simplified Expedited Data Support Thread Interaction Table - Domain View Table 3.7.11.2-1 provides the Interaction - Domain View: ASTER Simplified Expedited Data. # Table 3.7.11.2-1. Interaction Table - Domain View: ASTER Simplified Expedited Data (1 of 2) | | I | | · | · | Teu Dala (| · · · · · · · · · · · · · · · · · · · | |------|------------------------|--|---|--------------------------|--|---| | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondit
ions | Description | | H.1 | Subscribe | DAAC
User
Services
Represe
ntative | CSS
(SBSRV) | None | None | The DAAC User Services Representative places a subscription for the Science User to be notified when the AST_EXP is available. | | H.2 | Polling | INS
(INGST) | Directory | None | Entire
step is
really a
preconditi
on. | When the system is started, Ingest begins polling a directory, looking for files that meet the following standard: *.EDR.XFR, in the preconfigured directory. | | H.3 | Copy Files | EDOS | Directory | None | EDOS
knows the
host and
directory
to place
files. | EDOS copies the Expedited Data and metadata files to the directory, which Ingest is polling. | | H.4 | Request
Data Insert | INS
(INGST) | DSS
(SDSRV) | 1
AST_EXP
@ 16.6MB | AST_EXP
ESDT | Ingest inserts the new ASTER Expedited granule into the Data Server. | | H.5 | Trigger
Event | DSS
(SDSRV) | CSS
(SBSRV) | None | None | Upon successful completion of insertion of ASTER Expedited Data, the AST_EXP:Insert event is triggered. | | H.6 | Notification | CSS
(SBSRV) | CSS
(Email
Parser
Gateway) | None | The Email
Parser
has a
valid email
address. | The Email Parser is notified, via email, that new ASTER Expedited Data is available. The
notification contains the UR of the new AST_EXP granule. | | H.7 | Inspect | CSS
(Email
Parser
Gateway) | DSS
(SDSRV) | None | None | Search archives based on UR to obtain metadata information. | | H.8 | Send EDN | CSS
(Email
Parser
Gateway) | MSS
(ASTER
e-mail
header
handler) | None | None | Send Expedited Data Set Notice to the MSS (ASTER Email Header Handler) for inclusion of the header information. | Table 3.7.11.2-1. Interaction Table - Domain View: ASTER Simplified Expedited Data (2 of 2) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondit
ions | Description | |------|------------------|---|---|----------------|---------------------------|--| | H.9 | Forward
EDN | MSS
(ASTER
e-mail
header
handler) | ASTER DAR Gateway (to ASTER GDS) | None | None | The MSS sends the EDN to the ASTER GDS via the ASTER DAR Gateway. | | H.10 | Send EDR | ASTER DAR Gateway (to ASTER GDS) | MSS
(ASTER
e-mail
header
handler) | None | None | The ASTER GDS sends a request to retrieve Expedited Data via the ASTER DAR Gateway. | | H.11 | Forward
EDR | MSS
(ASTER
e-mail
header
handler) | CSS
(Email
Parser
Gateway) | None | None | The MSS forwards the Expedited Data Request to the Email Parser Gateway after stripping the header information. | | H.12 | Acquire | CSS
(Email
Parser
Gateway) | DSS
(SDSRV) | None | None | The Email Parser Gateway makes an acquire request on behalf of the ASTER GDS to obtain the necessary data granules from DSS. The "acquire" can be for an Ftp push. | | H.13 | Ftp/push
data | DSS
(SDSRV) | ASTER DAR Gateway (to ASTER GDS) | None | None | The ASTER DAR Gateway transfers the data granules to the ASTER GDS via Ftp Push. | # 3.7.11.3 ASTER Simplified Expedited Data Support Thread Component Interaction Table Table 3.7.11.3-1 provides the Component Interaction: ASTER Simplified Expedited Data. Table 3.7.11.3-1. Component Interaction Table: ASTER Simplified Expedited Data (1 of 7) | | | | I | (1011) | | |-------|--|--|-----------------------|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | H.1.1 | Startup
SBSRV GUI | DAAC
User
Services
Represen
tative | EcSbGui | Xterm | The DAAC User Services Representative invokes the Subscription Server GUI application. | | H.1.2 | Create &
Submit
Subscription
from GUI | DAAC
User
Services
Represen
tative | EcSbGui | Xterm | The DAAC User Services Representative represents him/herself as the Science User. The DAAC Operator brings up the GUI and clicks button to create new subscription. A list of events is then displayed from which the operator can choose to subscribe. The DAAC Operator selects the AST_EXP:Insert Event for subscription. Two actions (besides notification) are available from the Subscription Server at this time. FtpPush as a distribution mechanism is input via a GUI button. Other parameters required for FtpPush (including the Science User's host name, target directory, ftp user name, and ftp password) are input via the GUI. The other option is an Ftp Pull, also selected via a GUI button. There are no other parameters required for this option. | | H.1.3 | Retrieve
Distribution
Options | EcSbGui | EcCsReg istry | CCS
Middleware | The Subscription Server GUI retrieves distribution options from the ECS Configuration Registry (Ftp push, Ftp pull). | | H.1.4 | Submit
Subscription | EcSbGui | EcSbSub
Server | CCS
Middleware | Submit a subscription with Ftp action to the Subscription Server. This is accomplished with the EcClSubscription interface class. The correct Subscription Server is determined via a Server UR, declared in configuration. | | H.1.5 | Store a
Subscription | EcSbSub
Server | Sybase
ASE | CtLib | The subscription is stored in the Sybase ASE Database. | Table 3.7.11.3-1. Component Interaction Table: ASTER Simplified Expedited Data (2 of 7) | | ı | 1 | 1 | (2 of 7) | 7 | |-------|--|---------------------|-------------------------------|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | H.2.1 | Ingest Polling | EcInPolli
ng | Polling
Directory | Ftp | Ingest begins polling the configured directory. It periodically looks for files named *.EDR.XFR. The polling periodicity is determined from a configuration file. The mask of the file to look for is determined from the configuration by the Notify Type of the data provider in the Ingest database. A Checksum Percentage value will be added to the configuration file based on data provider. | | H.3.1 | EDOS
Copies Files | EDOS | Polling
Directory | Ftp | EDOS transfers (via the Ftp service) the ASTER Expedited Data to the predetermined directory. Location, directory, user name and password are as per the ASTER-ECS ICD. | | H.4.1 | Polling
Detects Files | EcInPolli
ng | Polling
Directory | Ftp | Ingest Polling detects files matching the *.EDR.XFR masks. | | H.4.2 | Send
Request | EcInPolli
ng | EcInReq
Mgr | CCS
Middleware | Polling Ingest process copies the .EDR file into the Ingest remote directory and sends a Create Request message to the Request Manager. A checksum verification flag will also be send to Request Manager. | | H.4.3 | Granule
Process
Request | EcInReq
Mgr | EcInGran | CCS
Middleware | Ingest Request Manager packages the request and a checksum verification flag into granules and sends them to the Ingest Granule Server. | | H.4.4 | Connect to
SDSRV | EcInGran | EcDsSci
enceData
Server | CCS
Middleware | Upon detecting an ASTER Expedited data file, Ingest begins a session with the Science Data Server by connecting. The correct Science Data Server is determined during EcInReqMgr startup, from Advertising, based on the data type. | | H.4.5 | Request
Metadata
Configuration
File | EcInGran | EcDsSci
enceData
Server | CCS
Middleware | Ingest requests the metadata configuration file (MCF) for the data being inserted. The data types being inserted are derived from the Ingest Request messages sent by the Polling server. | | H.4.6 | Validate
Metadata | EcInGran | EcDsSci
enceData
Server | CCS
Middleware | After building a metadata file for the AST_EXP granule, Ingest asks Science Data Server to validate the metadata, based on the granule's data type. | Table 3.7.11.3-1. Component Interaction Table: ASTER Simplified Expedited Data (3 of 7) | | | 1 | r | (3 of 7) | | |-------|-------------------------------------|-------------------------------|--|--------------------|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | H.4.7 | Request Data
Insert | EcInGran | EcDsSci
enceData
Server | CCS
Middleware | Ingest requests that the received files for the AST_EXP are inserted into the Data Server. An Insert request, containing the names of the files comprising the Expedited Data granule, is created. The structure of the Insert Request is hard-coded in the granule server process. Science Data Server validates metadata and determines the archived names of the files. | | H.4.8 | STMGT
Store | EcDsScie
nceData
Server | EcDsStR
equestM
anagerS
erver | CCS
Middleware | The Science Data Server requests that the Expedited Data is archived. The archive server reads the inserted files directly from the Ingest polling directory. Files may be directed to different tapes based on observation time to optimize tape usage. STMGT will calculate a checksum for a configurable percentage of files that do not yet have one. STMGT will verify the checksum value for the files based on the ChecksumonIngest flag. | | H.4.9 | Adding a
Granule to
Inventory | EcDsScie
nceData
Server | Sybase
ASE/SQ
S | CtLib | The validated metadata is parsed and added
to the inventory of the Science Data Server, this includes checksum information when available. | | H.5.1 | Trigger Event | EcDsScie
nceData
Server | EcSbSub
Server | CCS
Middleware | Upon successful insertion of AST_EXP granule, the AST_EXP:Insert event is triggered. The correct subscription server is determined from the Science Data Server configuration. Provided with the event triggering is the UR of the inserted granule. | | H.5.2 | Retrieve
Subscriptions | EcSbSub
Server | Sybase
ASE | CtLib | The Subscription Server queries the Sybase ASE database determining which subscriptions need to be activated, or fired. Each query "hit" is an activated subscription and executes independently. | | H.6.1 | Send
Notification | EcSbSub
Server | Email
Service | E-mail | The Subscription Server notifies the Email Service that an AST_EXP granule and associated signal file is available. The UR of the granule is passed in the notification to the user, along with a reference to the subscription that is being fulfilled. | Table 3.7.11.3-1. Component Interaction Table: ASTER Simplified Expedited Data (4 of 7) | Step | Event | Interface | Interface | Interface | Description | |--------|------------------------------------|--|-------------------------------|--------------------|--| | | | Client | Provider | Mech. | | | H.6.2 | Store the
Email
notification | EcCsEm
ailParser | Email
Service | Sendmail
Script | The ASTER E-mail Parser Gateway stores the notification as a text file in a configurable directory location using a Sendmail script. A reference to this script is available in the /etc/mail/aliases file. | | H.7.1 | Parse
Notification | EcCsEm
ailParser | Unix File
System | System calls | The ASTER E-mail Parser Gateway uses the EDN packager functionality to open the notification text file and reads the contents. It then parses the contents and recovers the Granule UR included in the notification. | | H.7.2 | Connect to
SDSRV | EcCsEm
ailParser | EcDsSci
enceData
Server | CCS
Middleware | The E-mail Parser Gateway then begins a session with the Science Data Server by connecting. The correct Science Data Server is determined by using the Server UR embedded in the Granule UR. | | H.7.3 | Inspect
Granule
Information | EcCsEm
ailParser | EcDsSci
enceData
Server | CCS
Middleware | The E-mail Parser Gateway queries the Science Data Server for the metadata related to the granule specified in the notification received from the Subscription Server using the inspect interface provided by the Science Data Server client library. Using this information, the E-mail Parser Gateway composes an EDN. | | H.8.1 | Send EDN | EcCsEm
ailParser | Email
Service | Key
Mechanism | The E-mail Parser Gateway sends the EDN to the MSS ASTER Email Notification Service by using a configurable E-mail address. | | H.9.1 | Add Header | ASTER
Filter.pl | Email
Service | Sendmail
Script | The MSS Header Handler adds a pre-
defined header to the EDN that it received
from the E-mail Parser Gateway. | | H.9.2 | Forward
EDN | MSS
(ASTER
Email
Header
Handler) | Email
Service | Key
Mechanism | The MSS Header Handler forwards the EDN to the ASTER GDS using a configurable E-mail address specified in the ICD. | | H.10.1 | Send EDR | ASTER
GDS | Email
Service | Key
Mechanism | Upon receiving the EDN, an operator at the ASTER GDS prepares an EDR and sends it to the MSS Email Notification service via email using a configurable address. The operator includes the Granule UR of the Expedited Data Set that he wishes to acquire in the EDR. | Table 3.7.11.3-1. Component Interaction Table: ASTER Simplified Expedited Data (5 of 7) | Step | Event | Interface | Interface | Interface | Description | |-------------|------------------------|--|---|-----------------------|---| | H.10.2 | Strip Header | Client
ASTERR
cvFilter.pl | Provider Email Service | Mech. Sendmail Script | The MSS Header Handler strips the header from the EDR that it received from the ASTER GDS. | | H.11.1 | Forward
EDR | MSS
(ASTER
Email
Header
Handler) | Email
Service | Key
Mechanism | The MSS Header Handler forwards the EDR to the ASTER E-mail Parser Gateway using an E-mail address. | | H.11.2 | Store EDR | EcCsEm
ailParser | Email
Service | Sendmail
Script | The E-mail Parser Gateway stores the EDR as a text file in a configurable directory location using a Sendmail script. A reference to this script is available in the /etc/mail/aliases file. | | H.11.3 | Parse EDR | EcCsEm
ailParser | Unix File
System | System calls | The E-mail Parser Gateway opens the EDR text file and reads the contents. It then parses the contents and recovers the Granule UR included in the notification. | | H.12.1
a | Connect to OMS | EcCsEm
ailParser | EcOmOr
derMana
ger | CCS
Middleware | When configured to submit EDR to OMS, the E-mail Parser Gateway then begins a session with the Order Manager Server by connecting. | | H.12.1
b | Connect to
SDSRV | EcCsEm
ailParser | EcDsSci
enceData
Server | CCS
Middleware | When configured to submit EDR to SDSRV, the E-mail Parser Gateway then begins a session with the Science Data Server by connecting. The correct Science Data Server is determined by using the Server UR embedded in the Granule UR. This is pertinent if there are multiple Science Data Servers in use at one DAAC in one mode. | | H.12.2 | Acquire | EcCsEm
ailParser | EcOmOr
derMana
ger
or
EcDsSci
enceData
Server | CCS
Middleware | When configured to submit EDR to OMS, the E-mail Parser submits the request to OMS, then OMS forwards the request to SDSRV. When configure to submit EDR to SDSVR, the E-mail Parser submits the request directly to Science Data Server. The Acquire request is an Ftp Pull of all granules in the ESDT Reference Collection. | | H.13.1 | Create
Staging Disk | EcDsScie
nceData
Server | EcDsStR
equestM
anagerS
erver | CCS
Middleware | The Science Data Server verifies access privileges for the granule and creates a staging disk area for metadata files, which allocates space and passes back a reference to that disk space. The amount of staging disk to request is determined by the size of the metadata file. | Table 3.7.11.3-1. Component Interaction Table: ASTER Simplified Expedited Data (6 of 7) | Cton | Farant | Intonfoco | luta ufa a a | (O OI 7) | Description | |--------|--|--------------------------------|--|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | H.13.2 | Create
Metadata file | EcDsSci
enceData
Server | EcDsSci
enceData
Server | CCS
Middleware | For each granule referenced in the Acquire request, the Science Data Server creates a file containing the granule's metadata before passing to the Data Distribution Server. | | H.13.3 | Distribute
Granules,
Synchronous | EcDsSci
enceData
Server | EcDsDist
ributionS
erver | CCS
Middleware | The Science Data Server submits a request to the Data Distribution Server. The request includes, for each granule, a reference to the metadata file as well as all data files. Other parameters from the Acquire request are passed to the Data Distribution Server. | | H.13.4 | Create
Staging Disk | EcDsDist
ributionS
erver | EcDsStR
equestM
anagerS
erver | CCS
Middleware | The Data Distribution Server creates staging disk areas for the granule files in the archive. This allocates space and passes back a reference to that disk space. The amount of staging disk area to request is determined by the size of the metadata file. | | H.13.5 | STMGT
Retrieve | EcDsDist
ributionS
erver | EcDsStR
equestM
anagerS
erver | CCS
Middleware | The Data Distribution Server requests Storage Management to retrieve the granule file archived. This results in the file being staged to read-only cache disks. STMGT will verify the checksum for a configurable percentage of the files that have one. Storage Management informs the Data Distribution Server of the file sizes. This means all files needed to fulfill the distribution request are in the read only cache and ready to be linked. The correct archive object to request is
determined from the information provided by the Science Data Server in the distribution request. Locating the files may use the observation date when archive tape placement is optimized based on date. This returns references to the files in the read-only cache. | | H.13.6 | Claim
Ownership | EcDsDist
ributionS
erver | EcDsStR
equestM
anagerS
erver | CCS
Middleware | The Data Distribution Server claims ownership of the staging disk created by the Science Data Server by sending a request to the Storage Management Request Manager. | Table 3.7.11.3-1. Component Interaction Table: ASTER Simplified Expedited Data (7 of 7) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |---------|----------------------------------|--------------------------------|--|--------------------|--| | H.13.7 | Link files to
Staging
Disk | EcDsDistri
butionServ
er | EcDsStRe
questMan
agerServe
r | CCS
Middleware | The Data Distribution Server links the files from the read-only cache into the staging disk. | | H.13.8 | Link files to
Staging
Disk | EcDsDistri
butionServ
er | EcDsStRe
questMan
agerServe
r | CCS
Middleware | The Data Distribution Server links the metadata files from the Science Data Server's staging disk into the staging disk. | | H.13.9 | FtpPush
Files | EcDsDistri
butionServ
er | EcDsStRe
questMan
agerServe
r | CCS
Middleware | The Data Distribution Server now creates the Resource manager for Ftp Pushes via a Resource Manager Factory. The correct resource manager is determined from the media type handed to the resource factory (FtpPush, in this case). The correct FTP Server is determined from the configuration within the resource factory. The files, host, location, user name and password are all determined from the information provided in the original Acquire request. | | H.13.10 | Ftp/push
data | EcDsStFtp
Server | Operating
System
Ftp
daemon | Ftp | The FTP Server performs the actual Ftp of the files via the Operating System Ftp daemon to the ASTER GDS. | ### 3.7.12 ASTER Routine Processing Planning Data Start/Stop Time Thread ### **Thread Description** This thread illustrates how to perform ASTER processing for ACT, BTS, and ETS PGEs. The following system functionality is exercised in this thread: • The capability to re-process ASTER data. #### **Thread Preconditions** The PDPS database, the Science Data Server, the Subscription Server, the Production Request Editor, the Job Management Server, AutoSys, and the Planning Workbench must be up and running. Input granules must be available on the Science Data Server. The original Production Request must already be present in the PDPS DB. SSI&T must have set up the ASTER ACT PGE as a data scheduled PGE. The data type of AST_L1B must be set up as non-routine. # 3.7.12.1 ASTER Routine Processing Planning Data Start/Stop Time Thread Interaction Diagram Figure 3.7.12.1-1 depicts the ASTER Routine Processing Planning Data Start/Stop Time Interaction. Figure 3.7.12.1-1. ASTER Routine Processing Planning Data Start/Stop Time Interaction Diagram ## 3.7.12.2 ASTER Routine Processing Planning Data Start/Stop Time Interaction Table - Domain View Table 3.7.12.2-1 provides the interaction Domain View: ASTER Routine Processing Planning Data Start/Stop Time. Table 3.7.12.2-1. Interaction Table - Domain View: ASTER Routine Processing Planning Data Start/Stop Time (1 of 2) | C4 | | | 1 | Deta legues | <u>-</u> | | |------|--------------------------------------|--|-----------------------|---|--|--| | Step | Event | Interface
Client | Interface
Provider | Data Issues | Step
Preconditions | Description | | I.1 | Ingest
ASTER tape | DAAC Ops
- | INS
(INGST) | ASTER Level
1 processing
is not
performed at
ECS. | The ASTER PGE must be set up as a data scheduled PGE. The data type AST_L1B must be set up as non-routine. | The ASTER instrument team provides the tape. | | 1.2 | Query
database | DAAC
Ops- | DSS
(SDSRV
DB) | Data provided
by ASTER
tape. | Tape must be successfully ingested. | Operator queries for time range needed for Production Request. | | 1.3 | Return times | DSS
(SDSRV
DB) | DAAC
Ops - | Data provided by ASTER tape. | Tape must be successfully ingested. | This start and stop
time range is
needed by the PLS
Production Request
Editor. | | 1.4 | Initiate
ASTER
processing | DAAC Ops
-
Production
Planner | PLS
(PLANG) | The original Production Request must be known and accessible. | The Production
Request Editor
must be up and
running. | The Production Planner initiates reprocessing. | | 1.5 | Submit subscription | PLS
(PLANG) | CSS
(SBSRV) | Input granules must be available. | None | Subscriptions must
be submitted
individually for each
data type. | | 1.6 | Read data
type
granules | PLS
(PLANG) | PDPS
DB | The original Production Request must be present in the DB. | The DB must be up and running. | All the data type granules for the selected input data and time range must be read. | | 1.7 | Determine
data to be
predicted | PLS
(PLANG) | PLS
(PLANG) | The original Production Request must be missing data. | None | Data is predicted to
substitute for data
that is missing from
the PDPS DB. | | 1.8 | Query for each input data type | PLS
(PLANG) | DSS
(SDSRV) | None | None | Each query is based on a time range. | Table 3.7.12.2-1. Interaction Table - Domain View: ASTER Routine Processing Planning Data Start/Stop Time (2 of 2) | | 1 | ı | | 1 (2 · 0 · 2) | | | |------|---|--|-----------------------|----------------|--|---| | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Preconditions | Description | | 1.9 | Prepare
granules
and
generate
DPR | PLS
(PLANG) | PLS
(PLANG) | None | CCS Middleware,
the socket
replacement
code for DCE
must be up and
running. | Match each Science Data Server granule with a PDPS DB granule and then resume normal processing. | | I.10 | Query for
PGE output | PLS
(PLANG) | DSS
(SDSRV) | None | CCS Middleware must be up and running. | If these outputs are there, skip generating the current DPR to avoid re-generating output products. | | I.11 | Write
DPR(s) | PLS
(PLANG) | PDPS DB | None | The DB must be up and running. | The DPR(s) are written to the DB normally. | | I.12 | Create and activate plan | DAAC Ops
-
Production
Planner | PLS
(PLANG) | None | The Production Request Editor and the Planning Workbench must be up and running. | The plan is created and activated normally. | | I.13 | Create a
DPR job for
each DPR | PLS
(PLANG) | DPS
(PRONG) | None | CCS
MIDDLEWARE
must be up and
running. | The DPR job for each DPR is created normally. | | 1.14 | Place jobs in AutoSys | DPS
(PRONG) | DPS
(PRONG) | None | AutoSys must be up and running. | The jobs are placed in AutoSys normally. | # 3.7.12.3 ASTER Routine Processing Planning Data Start/Stop Time Component Interaction Table Table 3.7.12.3-1 provides the Component Interaction: ASTER Routine Processing Planning Data Start/Stop Time. Table 3.7.12.3-1. Component Interaction Table: ASTER Routine Processing Planning Data Start/Stop Time (1 of 2) | | | I | | | rt/Stop Time (1 of 2) | |-------|---|--------------------------------|--------------------------------|----------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | I.1.1 | Ingest
ASTER tape | DAAC Ops | EcInGUI | GUI | The ASTER instrument team provides the tape. | | I.2.1 | Query
database | DAAC Ops | SDSRV
DB (ECS
Inventory) | Command
line/isql | Script queries for time range needed for Production Request. | | I.3.1 | Return
Times | SDSRV DB
(ECS
Inventory) | DAAC
Ops | Command
line/isql | This start and stop time range is needed by the PLS Production Request Editor. | | I.4.1 | Start
Production
Request
Editor | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Request Editor is started normally. | | 1.4.2 | Initiate request for Production Request to be reprocessed | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner initiates the reprocessing request. | | 1.4.3 | Change PR type | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner changes the Production Request (PR) type from Routine to Reprocessing. | | 1.4.4 | Save
Production
Request | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner saves the Production Request under a new, unique name. | | I.5.1 |
Submit
Subscription | EcPlSubMgr | EcSbSub
Server | CCS
Middleware | The subscriptions are submitted for each data type individually. | | I.6.1 | Read data type granules | EcPIPREdit
or_IF | PDPS DB | CtLib | All of the data type granules for input data and time range are read. | | I.7.1 | Determine
data to be
predicted | EcPIPREdit
or_IF | PDPS DB | CtLib | This determination is based on the data missing in the PDPS DB. | | I.8.1 | Query for each input data type | EcPIPREdit
or_IF | EcDsScie
nceDataS
erver | CtLib | These queries are based on a time range. | | I.9.1 | Inspect and match granules | EcPIPREdit
or_IF | EcPIPREd itor_IF | CtLib | Each Science Data Server granule is matched with a PDPS DB granule. | | 1.9.2 | Generate
DPR(s) | EcPIPREdit or_IF | EcPIPREd itor_IF | CtLib | The DPR(s) are generated. | Table 3.7.12.3-1. Component Interaction Table: ASTER Routine Processing Planning Data Start/Stop Time (2 of 2) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |--------|---|--|-------------------------------|----------------------|---| | I.10.1 | Query for
PGE output | EcPIPREdit
or_IF | EcDsScie
nceDataS
erver | CCS
Middleware | If these outputs are there, skip generating the current DPR to avoid re-generating output products. | | I.11.1 | Write
DPR(s) to
DB | EcPIPREdit
or_IF | PDPS DB | CtLib | The DPR(s) are written to the DB. | | I.12.1 | Shut down
Production
Request
Editor | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner shuts down the Production Request Editor. | | I.12.2 | Start up
Planning
Workbench | DAAC Ops - Production Planner | EcPIWb | GUI | The Production Planner starts up the Planning Workbench. | | I.12.3 | Select
Production
Request
and create
a plan | DAAC Ops
-
Production
Planner | EcPIWb | GUI | The Production Planner selects a Production Request and creates a plan. | | I.12.4 | Activate the plan | DAAC Ops
-
Production
Planner | EcPIWb | GUI | The Production Planner activates the plan. | | 1.13.1 | Create a
DPR job for
each DPR | EcPIWb | EcDpPrJo
bMgmt | CCS
Middleware | A Data Processing Request (DPR) job is created for each DPR. | | 1.14.1 | Jobs
placed in
AutoSys | EcDpPrJob
Mgmt | AutoSys | JIL (AutoSys
API) | The job can now be run in AutoSys. | ### 3.7.13 ASTER Routine Processing Planning Insertion Time Thread This thread illustrates how to perform ASTER processing using the tar file insertion time instead of the usual data start and stop times for ASTER BTS (Brightness Temperature at Sensor) PGEs. Note that this option is not available for ASTER ACT (Atmospheric Correction - TIR) and ETS (Emissivity/Temperature Separation) PGEs. The following system functionality is exercised in this scenario: • The capability to re-process ASTER data using the time the tar file was inserted. #### **Thread Preconditions** The PDPS database, the Science Data Server, the Subscription Server, the Production Request Editor, the Job Management Server, AutoSys, and the Planning Workbench must be up and running. Input granules must be available on the Science Data Server. The original Production Request must already be present in the PDPS DB. SSI&T must have set up the ASTER ACT PGE as a data scheduled PGE – see the ASTER Routine Processing Planning Data Start/Stop Time Thread. The data type of AST_L1B must be set up as non-routine. # 3.7.13.1 ASTER Routine Processing Planning Insertion Time Thread Interaction Diagram – Domain View Figure 3.7.13.1-1 depicts the ASTER Routine Processing Planning Insertion Time Thread Interaction. Figure 3.7.13.1-1. Routine Processing Planning Insertion Time Thread Interaction Diagram ## 3.7.13.2 Routine Processing Planning Insertion Time Interaction Table - Domain View Table 3.7.13.2-1 provides the Interaction – Domain View: Routine Processing Planning Insertion Time Interaction. Table 3.7.13.2-1. Interaction Table - Domain View: ASTER Routine Processing Planning Insertion Time (1 of 2) | Step | Interaction | Interface | Interface | Data Issues | Preconditions | Description | |------|---|-------------------------------|----------------|---|---|--| | Step | interaction | Client | Provider | Data issues | Freconditions | Description | | J.1 | Ingest
ASTER tape | DAAC Ops | INS
(INGST) | ASTER Level 1 processing is not performed at ECS. | The ASTER PGE must be set up as a data scheduled PGE. The data type AST_L1B must be set up as nonroutine. | The ASTER instrument team provides the tape. | | J.2 | Initialize
ASTER
processing | DAAC Ops - Production Planner | PLS
(PLANG) | The original Production Request must be known and accessible. | The Production
Request Editor must
be up and running. | The Production Planner initiates ad hoc processing using the tar file insertion time. | | J.3 | Submit
subscription | PLS
(PLANG) | CSS
(SBSRV) | Input
granules
must be
available. | None | Subscriptions must be submitted individually for each data type. | | J.4 | Read data
type
granules | PLS
(PLANG) | PDPS
DB | The original Production Request must be present in the DB. | The DB must be up and running. | All the data type granules for the selected input data and time range must be read. | | J.5 | Determine
gaps for
query | PLS
(PLANG) | PDPS
DB | None | None | The Production Request Editor determines the time ranges for the upcoming Science Data Server query. | | J.6 | Query for each input data type | PLS
(PLANG) | DSS
(SDSRV) | None | None | Each query is based on a time range and uses a tar file insertion time. | | J.7 | Prepare
granules
and
generate
DPR | PLS
(PLANG) | PLS
(PLANG) | None | CCS MIDDLEWARE must be up and running. | Match each Science Data Server granule with a PDPS DB granule and then resume normal processing. | | J.8 | Write
DPR(s) | PLS
(PLANG) | PDPS
DB | None | The DB must be up and running. | The DPR(s) is written to the DB normally. | Table 3.7.13.2-1. Interaction Table - Domain View: ASTER Routine Processing Planning Insertion Time (2 of 2) | Step | Interaction | Interface
Client | Interface
Provider | Data
Issues | Preconditions | Description | |------|-------------------------------------|--|-----------------------|----------------|--|--| | J.9 | Create and activate plan | DAAC Ops
-
Production
Planner | PLS
(PLANG) | None | The Production Request Editor and the Planning Workbench must be up and running. | The plan is created and activated normally. | | J.10 | Create a
DPR job for
each DPR | PLS
(PLANG) | DPS
(PRONG) | None | CCS MIDDLEWARE must be up and running. | The Data Processing
Request (DPR) job for
each DPR is created
normally. | | J.11 | Place jobs in AutoSys | DPS
(PRONG) | DPS
(PRONG) | None | AutoSys must be up and running. | The jobs are placed in AutoSys normally. | # 3.7.13.1 Routine Processing Planning Insertion Time Thread Component Interaction Table Table 3.7.13.3-1 provides the Component Interaction: Routine Processing Planning Insertion Time Thread. Table 3.7.13.3-1. Component Interaction Table: ASTER Routine Processing Planning Insertion Time (1 of 2) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|---|-------------------------------|-----------------------|--------------------|---| | J.1.1 | Ingest
ASTER
tape | DAAC Ops | EcInGUI | GUI | The ASTER instrument team provides the tape. | | J.2.1 | Start
Production
Request
Editor | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Request Editor is started normally. | | J.2.2 | Initiate request for Production Request to be reprocessed | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner initiates the reprocessing request. | | J.2.3 | Change PR
type | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner changes the PR type from Routine to Reprocessing. | | J.2.4 | Save
Production
Request | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner saves the Production Request under a new, unique name. | | J.3.1 | Submit subscription | EcPlSubM
gr | EcSbSub
Server | CCS
Middleware | The subscriptions are submitted for each data type individually. | Table 3.7.13.3-1. Component Interaction Table: ASTER Routine Processing Planning Insertion Time (2 of 2) | _ | Figuring insertion time (2 of 2) | | | | | | | |--------|---|-------------------------------|-------------------------------|-------------------------|---|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | J.4.1 | Read data type granules | EcPIPREdit
or_IF | PDPS DB | CtLib | All of the data type granules for input data and time range are read. | | | | J.5.1 | Determine
gaps for
query |
EcPIPREdit
or_IF | PDPS DB | CtLib | Determine time ranges for the upcoming Science Data Server query. | | | | J.6.1 | Query for each input data type | EcPIPREdit
or_IF | EcDsScie
nceDataS
erver | CtLib | These queries are based on a time range. | | | | J.7.1 | Inspect and match granules | EcPIPREdit
or_IF | EcPIPREd itor_IF | CtLib | Each Science Data Server granule is matched with a PDPS DB granule. | | | | J.7.2 | Generate
DPR(s) | EcPIPREdit or_IF | EcPIPREd itor_IF | CtLib | The DPR(s) are generated. | | | | J.8.1 | Write
DPR(s) to
DB | EcPIPREdit
or_IF | PDPS DB | CtLib | The DPR(s) are written to the DB. | | | | J.9.1 | Shut down
Production
Request
Editor | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner shuts down the Production Request Editor. | | | | J.9.2 | Start up
Planning
Workbench | DAAC Ops - Production Planner | EcPIWb | GUI | The Production Planner starts up the Planning Workbench. | | | | J.9.3 | Select
Production
Request and
create a
plan | DAAC Ops - Production Planner | EcPIWb | GUI | The Production Planner selects a Production Request and creates a plan. | | | | J.9.4 | Activate the plan | DAAC Ops - Production Planner | EcPIWb | GUI | The Production Planner activates the plan. | | | | J.10.1 | Create a
DPR job for
each DPR | EcPIWb | EcDpPrJo
bMgmt | CCS
Middleware | A DPR job is created for each DPR. | | | | J.11.1 | Jobs placed in AutoSys | EcDpPrJob
Mgmt | AutoSys | JIL
(AutoSys
API) | The job can now be run in AutoSys. | | | ### 3.7.14 ASTER Spatial Query Thread ### **Thread Description** This thread illustrates how to perform ASTER processing for a predefined geographic area. This area can be expanded (padded) by a predefined number of kilometers. Currently, this capability is being utilized for ACT (Atmospheric Correction – TIR) and ACVS (Atmospheric Correction – VNIR, SWIR) PGEs. The set of points describing the polygon, which represent the geographic area along with the number of kilometers of the "pad" are defined in the key input granules. If the "pad" is not required, the kilometer value of the "pad" is set to zero. The following system functionality is exercised in this thread: • The capability to routinely process ASTER data for an existing or for an expanded (or padded), predefined geographic area. #### **Thread Preconditions** The PDPS database, the Science Data Server, the Subscription Server, the Production Request Editor, the Subscription Manager, the Job Management Server, AutoSys, and the Planning Workbench must be up and running. Input granules must be available on the Science Data Server. The data type has been defined as spatial pad during the SSI&T process. The instrument team controls the size of the pad (in kilometers). Conceptually, however, the size of the pad should probably be less than that of the instrument's photograph, so it can be thought of as a way to obtain portions of the neighboring photographs, which border on the original (or central) photograph. Note: Due to limitations in the current version of the SQS COTS package, the spatial region defined (i.e., the original size of the polygon combined with the size of the pad) must not exceed 60 degrees in latitude or longitude. Since this is a huge area, this limitation should not impact the user. ### 3.7.14.1 ASTER Spatial Query Thread Interaction Diagram Figure 3.7.14.1-1 depicts the ASTER Spatial Query Interaction. Figure 3.7.14.1-1. ASTER Spatial Query Interaction Diagram ## 3.7.14.2 ASTER Spatial Interaction Table - Domain View Table 3.7.14.2-1 provides the interaction Domain View: ASTER Spatial Query. Table 3.7.14.2-1. Interaction Table - Domain View: ASTER Spatial Query (1 of 2) | Step | Event | Interface
Client | Interface
Provider | Data Issues | Step
Preconditions | Description | |------|---|--|-----------------------|---|--|--| | K.1 | Enter
Production
Request | DAAC Ops
-
Production
Planner | PLS
(PLANG) | Input data
must already
be available
on the
Science Data
Server. | None | The Production Planner initiates a spatial query. | | K.2 | Prepare for query | PLS
(PLANG) | PLS
(PLANG) | The constraints are based on time information. | None | The query is prepared using the time range. | | K.3 | Query for
each key
input data
type | PLS
(PLANG) | DSS
(SDSRV) | None | None | Each query is based on a time range. | | K.4 | Extract
polygon
information
from
granules | PLS
(PLANG) | PLS
(PLANG) | Extracts information from GIParameterLi st. | None | This pulls information from GIParameterList. | | K.5 | Add polygon expansion information to query | PLS
(PLANG) | PLS
(PLANG) | A spatial pad data type was selected. | SSIT was
performed for a
spatial pad
data type. | The number of kilometer that pad the query. | | K.6 | Query for
each target
data type | PLS
(PLANG) | DSS
(SDSRV) | None | None | Uses spatial information extracted in the previous step. | | K.7 | Prepare
granules
and
generate
DPR | PLS
(PLANG) | PLS
(PLANG) | None | None | Prepare the granules using the data returned from the Science Data Server. | | K.8 | Write
DPR(s) | PLS
(PLANG) | PDPS
DB | None | None | The DPR(s) are written to the PDPS DB. | | K.9 | Create and activate plan | DAAC Ops - Production Planner | PLS
(PLANG) | None | None | The plan is created and activated normally. | Table 3.7.14.2-1. Interaction Table - Domain View: ASTER Spatial Query (2 of 2) | Step | Event | Interface
Client | Interface
Provider | Data Issues | Step
Preconditions | Description | |------|-----------------------------------|---------------------|-----------------------|-------------|-----------------------|---| | K.10 | Create
DPR job for
each DPR | PLS
(PLANG) | DPS
(PRONG) | None | None | The DPR job for each DPR is created normally. | | K.11 | Place jobs in AutoSys | DPS
(PRONG) | DPS
(PRONG) | None | None | The jobs are placed in AutoSys normally. | ## 3.7.14.3 ASTER Spatial Query Component Interaction Table Table 3.7.14.3-1 provides the Component Interaction: ASTER Spatial Query. Table 3.7.14.3-1. Component Interaction Table: ASTER Spatial Query (1 of 2) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|---|-------------------------------|-------------------------------|--------------------|---| | K.1.1 | Start
Production
Request
Editor | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Request Editor is started normally. | | K.1.2 | Initiate request for PR to be processed | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner initiates the processing request. | | K.1.3 | Save PR | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner saves the PR under a new, unique name. | | K.2.1 | Prepare for query | EcPIPREdit or_IF | EcPIPREd itor_IF | GUI | Use the time range as constraints. | | K.3.1 | Query for
each key
input data
type | EcPIPREdit or_IF | EcSbSub
Server | CCS
Middleware | Each query is based on a time range. | | K.4.1 | Extract
polygon
information
from
granules | EcPIPREdit
or_IF | EcPIPREd itor_IF | LibGI | This pulls information from the GIParameterList. | | K.5.1 | Add polygon expansion information to query | EcPIPREdit
or_IF | EcPIPREd itor_IF | CtLib | The query is padded with the designated number of kilometers. | | K.6.1 | Query for each target data type | EcPIPREdit or_IF | EcDsScie
nceDataS
erver | CCS
Middleware | A query is needed for each target data type. | Table 3.7.14.3-1. Component Interaction Table: ASTER Spatial Query (2 of 2) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |--------|--|-------------------------------|-----------------------|----------------------|---| | K.7.1 | Inspect
granules | EcPIPREdit
or_IF | PDPS DB | CtLib | Each Science Data Server granule is stored in the PDPS DB. | | K.7.2 | Generate
DPR(s) | EcPIPREdit or_IF | EcPIPREd itor_IF | CtLib | The DPR(s) are generated. | | K.8.1 | Write
DPR(s) to
DB | EcPIPREdit
or_IF | PDPS DB | CtLib | The DPR(s) are written to the PDPS DB. | | K.9.1 | Shut down
Production
Request
Editor | DAAC Ops - Production Planner | EcPIPREd itor_IF | GUI | The Production Planner shuts down the Production Request Editor. | | K.9.2 | Start up the Planning Workbench | DAAC Ops - Production Planner | EcPIWb | GUI | The Production Planner starts up the Planning Workbench. | | K.9.3 | Select the PR(s) and create a plan | DAAC Ops - Production Planner | EcPIWb | GUI | The Production Planner selects a Production Request and creates a plan. | | K.9.4 | Activate
the plan | DAAC Ops - Production Planner | EcPIWb | GUI | The Production Planner activates the plan. | | K.10.1 | Create a
DPR job for
each DPR | EcPIWb | EcDpPrJo
bMgmt | CCS
Middleware | A DPR job is created for each DPR. | | K.11.1 | Jobs
placed in
AutoSys | EcDpPrJob
Mgmt | AutoSys | JIL (AutoSys
API) | The job can now be run in AutoSys. | ### 3.7.15 ASTER View ECS Data Holdings Thread This thread shows how an ASTER GDS user can obtain information about the location and other attributes of specified data sets, and
browse specified data sets. # 3.7.15.1 ASTER View ECS Data Holdings Thread Interaction Diagram – Domain View Figure 3.7.15.1-1 depicts the ASTER View ECS Data Holdings Interaction. Figure 3.7.15.1-1. ASTER View ECS Data Holdings Interaction Diagram # 3.7.15.2 ASTER View ECS Data Holdings Thread Interaction Table – Domain View Table 3.7.15.2-1 provides the interaction Domain View: ASTER View ECS Data Holdings. Table 3.7.15.2-1. Interaction Table - Domain View: ASTER View ECS Data Holdings (1 of 2) | Holdings (1 of 2) | | | | | | | |-------------------|---|--------------------------|--------------------------|----------------|---------------------------|--| | Step | Event | Interface
Client | Interface
Provider | Data
issues | Step
Precon
ditions | Description | | L.1 | Directory
Search
Request | ASTER
Client
(GDS) | DMS
(ASTGW) | None | None | An ASTER client submits the ASTER user's Directory search request to the ASTER-ECS gateway via a specific socket. | | L.2 | Directory
Search
Request | DMS
(ASTGW) | DMS
(DDICT) | None | None | The ASTER Gateway (ASTGW) queries the Data Dictionary (DDICT), using the parameters specified in the request ODL, for the Directory Search Results. | | L.3 | Directory
Search
Result | DMS
(DDICT) | DMS
(ASTGW) | None | None | The Data Dictionary sends results to the ASTER Gateway. | | L.4 | Directory
Search
Result | DMS
(ASTGW) | ASTER
Client
(GDS) | None | None | The ASTER Gateway sends back the Directory Search Results to the ASTER Client, which displays them to the ASTER user. | | L.5 | Inventory
Search
Request | ASTER
Client
(GDS) | DMS
(ASTGW) | None | None | The ASTER client submits the ASTER user's Inventory Search Request to the ASTER-ECS Gateway in ASTER ODL format via a specific socket. | | L.6 | Inventory
Search
Request
Mapping | DMS
(ASTGW) | DMS
(DDICT) | None | None | The ASTER Gateway queries the Data Dictionary for the equivalent ECS mappings for the ASTER attributes/values specified in the request. | | L.7 | Inventory
Search
Request
Mapping | DMS
(DDICT) | DMS
(ASTGW) | None | None | The Data Dictionary returns ECS equivalents of the specified ASTER attributes/values to the ASTER Gateway. | | L.8 | Inventory
Search
Request | DMS
(ASTGW) | DMS
(V0
GTWAY) | None | None | The ASTER Gateway submits the request to the remote V0 Gateway. | | L.9 | Inventory
Search
Result | DMS
(V0
GTWAY) | DSS
(SDSRV) | None | None | The V0 Gateway translates the Search criteria from ODL to a query object (using GIParameters), and submits that query to the Search service. The V0 Gateway optionally configures a chunk size, which determines how many granules are returned to the V0 Gateway at one time. | Table 3.7.15.2-1. Interaction Table - Domain View: ASTER View ECS Data Holdings (2 of 2) | Step | Event | Interface
Client | Interface
Provider | Data
issues | Step
Precon
ditions | Description | |------|---|--------------------------|--------------------------|----------------|---------------------------|---| | L.10 | Inventory
Search
Results
Mapping | DSS
(SDSRV) | DMS
(DDICT) | None | None | The results of this Search are processed synchronously, and passed back to the V0 Gateway. | | L.11 | Inventory
Search
Result | DMS
(V0
GTWAY) | DMS
(ASTGW) | None | None | The V0 Gateway returns the results to the ASTER Gateway in V0 ODL form. | | L.12 | Inventory
Search
Results
Mapping | DMS
(ASTGW) | DMS
(DDICT) | None | None | The ASTER Gateway queries the Data Dictionary for the equivalent ASTER attributes/values for V0 attributes/values it received from the remote V0 Gateway. | | L.13 | Inventory
Search
Results
Mapping | DMS
(DDICT) | DMS
(ASTGW) | None | None | The Data Dictionary returns the ASTER equivalents of the V0 attributes/values to the ASTER Gateway. | | L.14 | Inventory
Search
Result | DMS
(ASTGW) | ASTER
Client
(GDS) | None | None | The ASTER Gateway sends back the results to ASTER Client, which displays them to the ASTER User. | | L.15 | Browse
Request | ASTER
Client
(GDS) | DMS
(ASTGW) | None | None | ASTER Client submits an Integrated Browse Request to the ASTER Gateway via a specific socket interface. | | L.16 | Acquire
Browse | DMS
(ASTGW) | DMS
(V0
GTWAY) | None | None | The ASTER Gateway sends the Browse request to the remote V0-ECS Gateway. | | L.17 | Browse
Request | DMS
(V0
GTWAY) | DSS
(SDSRV) | None | None | The V0 Gateway submits a Browse request for the browse granule. | | L.18 | Browse
Result | DSS
(SDSRV) | DMS
(V0
GTWAY) | None | None | The results of this Browse request are returned synchronously, and are passed back to the V0 Gateway. | | L.19 | Browse
Result | DMS
(V0
GTWAY) | DMS
(ASTGW) | None | None | The V0 Gateway sends the Browse results to the ASTER Gateway. | | L.20 | Browse
Result | DMS
(ASTGW) | ASTER
Client
(GDS) | None | None | The ASTER Gateway sends the results to the ASTER Client. | ## 3.7.15.3 ASTER View ECS Data Holdings Thread Component Interaction Table Table 3.7.15.3-1 provides the Component Interaction: ASTER View ECS Data Holdings. Table 3.7.15.3-1. Component Interaction Table: ASTER View ECS Data Holdings (1 of 6) | | (1010) | | | | | | | |-------|---|---------------------------|---------------------------|------------------------|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mechanism | Description | | | | L.1.1 | Submit a
Directory
Search | ASTER User | ASTER Client | Command | The ASTER user invokes an ASTER client at the ASTER GDS and sends a directory search request to the ASTER Gateway. | | | | L.1.2 | Receive a
Directory
Search
Request | ASTER Client | EcDmAsterTo
EcsGateway | ODL, over sockets | The ASTER Gateway receives the request on a specific port and socket on which it is listening. The request is an ODL structure. | | | | L.1.3 | User Profile | EcDmAsterTo
EcsGateway | EcMsAcRegU
serSrvr | CCS
Middleware | Upon receiving the request, the ASTER Gateway retrieves the User Profile using the ECS authenticator from the ODL message. The User Registration database is replicated across DAACs, so connection is made to the local User Registration Server. | | | | L.2.1 | Connect to DDICT | EcDmAsterTo
EcsGateway | Sybase ASE | CtLib | The ASTER Gateway connects to the Data Dictionary database to run a SQL, based on the criteria in the request ODL. | | | | L.2.2 | Run Query
against
DDICT | EcDmAsterTo
EcsGateway | Sybase ASE | CtLib | The SQL query is run against the Data Dictionary database, which returns the metadata of all the granules satisfying the search criteria. | | | | L.3.1 | Retrieve
results | Sybase ASE | EcDmAsterTo
EcsGateway | Distributes
Object | The ASTER Gateway retrieves the results of the database query and puts them in an ODL structure to be sent to the ASTER client. | | | | L.3.2 | Create ODL | EcDmAsterTo
EcsGateway | EcDmAsterTo
EcsGateway | Internal | The ASTER Gateway formats granule metadata into an ODL structure. | | | | L.4.1 | Send Results | EcDmEcsToA
sterGateway | ASTER Client | ODL,
Over Sockets | The results, which are in ODL, are sent to the ASTER client via the same socket on which it originally received the request. | | | Table 3.7.15.3-1. Component Interaction Table: ASTER View ECS Data Holdings (2 of 6) | _ | (2 01 0) | | | | | | | |-------|---|---------------------------|---------------------------|------------------------|---|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mechanism | Description | | | | L.5.1 | Submit an
Inventory
Search
Request | ASTER GDS | EcDmAsterTo
EcsGateway | ODL,
Over Sockets | The ASTER user invokes an ASTER client and sends an Inventory Search Request. | | | | L.5.2 | Receive an
Inventory
Search
Request | ASTER Client | EcDmAsterTo
EcsGateway | CCS
Middleware | The ASTER Gateway receives the request on a specific port and socket on which it is listening. The request is an ODL structure. | | | | L.5.3 | Convert to internal format | EcDmAsterTo
EcsGateway | EcDmAsterTo
EcsGateway | Internal | The ASTER Gateway converts the ODL structure to a GIParameterList. | | | | L.6.1 | Formulate attribute list | EcDmAsterTo
EcsGateway | EcDmAsterTo
EcsGateway | Internal | The ASTER Gateway formulates an attribute list to be converted to ECS format. | | | | L.6.2 | Submit
Inventory
Search
Mapping
Request | EcDmAsterTo
EcsGateway | Sybase ASE | CtLib | The ASTER Gateway submits a query for equivalent attributes to the Data Dictionary. | | | | L.7.1 | Retrieve equivalent attributes | Sybase ASE | EcDmAsterTo
EcsGateway | CtLib | The ASTER Gateway retrieves the equivalent attribute results from the Data Dictionary. | | | | L.7.2 | Submit
data
server
request | EcDmAsterTo
EcsGateway | Sybase ASE | CtLib | The ASTER Gateway submits a query to determine which ECS servers archive the requested data. | | | | L.7.3 | Retrieve data server results | Sybase ASE | EcDmAsterTo
EcsGateway | CtLib | The ASTER Gateway retrieves the data server results from the DDICT. | | | | L.8.1 | Arrange requests by server | EcDmAsterTo
EcsGateway | EcDmAsterTo
EcsGateway | Internal | The ASTER Gateway arranges request according to the server, which can handle them. | | | | L.8.2 | Convert requests to ODL | EcDmAsterTo
EcsGateway | EcDmAsterTo
EcsGateway | Internal | The ASTER Gateway converts requests for each server to V0 ODL. | | | | L.8.3 | Submit requests to servers | EcDmAsterTo
EcsGateway | EcDmV0ToEc
sGateway | ODL, Over
Sockets | The ASTER Gateway concurrently sends the request ODL to the V0 Gateway at each server required to handle a request. | | | Table 3.7.15.3-1. Component Interaction Table: ASTER View ECS Data Holdings (3 of 6) | | (3 07 6) | | | | | | | |-------|-----------------------|------------------------|---------------------------|------------------------|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mechanism | Description | | | | L.9.1 | Establish
ECS User | EcDmV0ToE
csGateway | EcMsAcReg
UserSrvr | CCS
Middleware | The V0 Gateway retrieves the User Profile using ECS Authenticator from ODL message, which includes an encrypted User ID and Password. The User Registration database is replicated across DAACs, so the connection is made to the local User Registration Server. | | | | L.9.2 | Translate
Query | EcDmV0ToE
csGateway | EcDmDictSer
ver | CtLib | The V0 Gateway translates the V0 terms from ODL into ECS names for query submittal using the Data Dictionary database. The interface currently is directly to the Data Dictionary database. The database name is retrieved from a configuration file. | | | | L.9.3 | Connect to
SDSRV | EcDmV0ToE
csGateway | EcDsScience
DataServer | CCS
Middleware | The V0 Gateway first connects to the Science Data Server. The correct Science Data Server is determined from a configuration file. | | | | L.9.4 | SDSRV
Query | EcDmV0ToE
csGateway | EcDsScience
DataServer | CCS
Middleware | The V0 Gateway translates the query into a DsClQuery object. This object is handed to the Search interface of the DsCl ESDT ReferenceCollector. After the search the Gateway receives a list of URs, then it does an "Inspect" to the Science Data Server to get the metadata. It first performs a GetQueryableParameter to determine all attributes associated with each granule. The V0 Gateway optionally configures a chunk size, which determines how many granules are returned to the V0 Gateway at one time. | | | Table 3.7.15.3-1. Component Interaction Table: ASTER View ECS Data Holdings (4 of 6) | Step | Event | Interface
Client | Interface
Provider | Interface
Mechanism | Description | |--------|---|---------------------------|---------------------------|------------------------|--| | L.10.1 | Request
Metadata | EcDsScience
DataServer | Sybase
ASE/SQS | CtLib | The Science Data Server breaks down the query object and translates it into a sequence of calls to the inventory database. Resultant rows are converted into data granules, each with their metadata extracted from the database. These results are packaged and returned to the query client. | | L.10.2 | Return
Results | EcDsScience
DataServer | EcDmV0ToEc
sGateway | CCS
Middleware | The Search method is synchronous, so the results of the search are returned to the calling function. After the search the Gateway receives a list of URs, then it does an "Inspect" to the Science Data Server to get the metadata. | | L.11.1 | Retrieve
Results | EcDmV0ToE
csGateway | EcDmAsterTo
EcsGateway | ODL, over
Sockets | When the V0 Gateway gets the results, they are translated into ODL, and passed back to the ASTER Gateway. The correct socket for sending results to the ASTER Gateway is the one used to submit the query. | | L.11.2 | Combine
Results | EcDmAsterTo
EcsGateway | EcDmV0ToEc
sGateway | Internal | The individual result sets from each DAAC are combined into a single result set. | | L.11.3 | Formulate attribute list | EcDmAsterTo
EcsGateway | EcDmAsterTo
EcsGateway | Internal | The ASTER Gateway formulates an attribute list to be converted to ASTER format. | | L.12.1 | Submit
Inventory
Search
Mapping
Request | EcDmAsterTo
EcsGateway | Sybase ASE | CtLib | The ASTER Gateway submits a query for equivalent attributes to the Data Dictionary. | | L.12.2 | Retrieve equivalent attributes | Sybase ASE | EcDmAsterTo
EcsGateway | CtLib | The ASTER Gateway retrieves the equivalent attribute results from the Data Dictionary. | | L.13.1 | Retrieve data server results | Sybase ASE | EcDmAsterTo
EcsGateway | CtLib | The ASTER Gateway retrieves the data server results from the Data Dictionary. | Table 3.7.15.3-1. Component Interaction Table: ASTER View ECS Data Holdings (5 of 6) | 01 | (5 0) Cton Front Interfere Interfere Interfere | | | | | | | |--------|--|---------------------------|---------------------------|------------------------|---|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mechanism | Description | | | | L.14.1 | Translate
Inventory
Search Result | EcDmEcsToA
sterGateway | ASTER GDS | ODL, over
Sockets | When the ASTER Gateway gets the results from each DAAC, they are translated into ASTER ODL. | | | | L.14.2 | Return
Results | EcDmEcsToA
sterGateway | ASTER GDS | ODL, over
Sockets | The combined results set is returned in chunks to the ASTER GDS. | | | | L.15.1 | Submit an
Browse
Request | ASTER GDS | EcDmAsterTo
EcsGateway | Command | The ASTER user invokes an ASTER client and sends a Browse Request. | | | | L.15.2 | Receive
Browse
Request | ASTER Client | EcDmAsterTo
EcsGateway | ODL,
Over Sockets | The ASTER Gateway receives the request on a specific port and socket on which it is listening. The request is an ODL structure. | | | | L.15.3 | Convert to internal format | EcDmAsterTo
EcsGateway | EcDmAsterTo
EcsGateway | Internal | The ASTER Gateway converts the ODL structure to a GIParameterList. | | | | L.16.1 | Arrange requests by server | EcDmAsterTo
EcsGateway | EcDmAsterTo
EcsGateway | Internal | The ASTER Gateway arranges request according to the server, which can handle them. | | | | L.16.2 | Convert requests to ODL | EcDmAsterTo
EcsGateway | EcDmAsterTo
EcsGateway | Internal | The ASTER Gateway converts requests for each server to V0 ODL. | | | | L.16.3 | Submit requests to servers | EcDmAsterTo
EcsGateway | EcDmV0ToEc
sGateway | ODL, Over
Sockets | The ASTER Gateway concurrently sends the request ODL to the V0 Gateway at each server required to handle a request. | | | | L.17.1 | Establish
ECS User | EcDmV0ToE
csGateway | EcDsScience
DataServer | CCS
Middleware | The V0 Gateway submits an Acquire request for the browse granule. | | | | L.17.2 | Translate
Query | EcDmV0ToE
csGateway | EcDmDictSer
ver | CtLib | The V0 Gateway translates the V0 terms from ODL into ECS names for query submittal using the Data Dictionary database. The interface currently is directly to the Data Dictionary database. The database name is retrieved from a configuration file. | | | Table 3.7.15.3-1. Component Interaction Table: ASTER View ECS Data Holdings (6 of 6) | | (0 01 0) | | | | | | | |--------|---------------------|---------------------------|-------------------------------|------------------------|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mechanism | Description | | | | L.17.3 | Connect to
SDSRV | EcDmV0ToE
csGateway | EcDsScienc
eDataServe
r | CCS
Middleware | The V0 Gateway first connects to the Science Data Server. The correct Science Data Server is determined from a configuration file. | | | | L.17.4 | SDSRV
Query | EcDmV0ToE
csGateway | EcDsScienc
eDataServe
r | CCS
Middleware | The V0 Gateway translates the query into a DsClQuery object. This object is handed to the Search interface of the DsCl ESDT ReferenceCollector. After
the search the Gateway receives a list of URs. Then it does an "Inspect" to the Science Data Server to get the metadata. It first performs a GetQueryableParameter to determine all attributes associated with each granule. The V0 Gateway optionally configures a chunk size, which determines how many granules are returned to the V0 Gateway at one time. | | | | L.18.1 | Request
Metadata | EcDsScience
DataServer | Sybase
ASE/SQS | CtLib | The Science Data Server retrieves browse image. This result is packaged and returned to the Query client. | | | | L18.2 | Return
Results | EcDsScience
DataServer | EcDmV0To
EcsGatewa
y | CCS
Middleware | The Search method is synchronous, so the resulting browse image is returned to the calling function. | | | | L.19.1 | Retrieve
Results | EcDmV0ToE
csGateway | EcDmEcsT
oAsterGate
way | ODL, over
Sockets | When the V0 Gateway gets the results, they are translated into ODL, and passed back to the ASTER Gateway in chunks. The correct socket for sending results to the ASTER Gateway is the one used to submit the query. | | | | L.20.1 | Return
Results | EcDmEcsToA
sterGateway | ASTER
GDS | ODL, over
Sockets | The combined results set is returned in chunks to the ASTER GDS. | | | #### 3.7.16 ASTER Price & Order Data Thread This thread shows how an ASTER GDS user can obtain a price estimate for ECS products, place an order for ECS products stored at any DAAC and obtain the status of a previously placed order. #### 3.7.16.1 ASTER Price & Order Data Thread Interaction Diagram – Domain View Figure 3.7.16.1-1 depicts the ASTER Price & Order Data Interaction. Figure 3.7.16.1-1. ASTER Price & Order Data Interaction Diagram #### 3.7.16.2 ASTER Price & Order Data Thread Interaction Table – Domain View Table 3.7.16.2-1 provides the Domain View: ASTER Price & Order Data. Table 3.7.16.2-1. Interaction Table - Domain View: ASTER Price & Order Data (1 of 4) | Step | Event | Interface
Client | Interface
Provider | Data
issues | Step
Precondi
tions | Description | |------|-------------------------------------|--------------------------|--------------------------|----------------|---------------------------|--| | M.1 | Send Price
Estimate
Request | ASTER
User | ASTER
Client
(GDS) | None | None | The ASTER User decides to request a Price Estimate and invokes the ASTER Client at the GDS to send a Price Estimate Request. | | M.2 | Submit Price
Estimate
Request | ASTER
Client
(GDS) | DMS
(ASTGW) | None | None | The ASTER Client submits the ASTER User's Price Estimate Request to the GDS-ECS gateway in GDS ODL format via a specific socket. | | M.3 | Return Price
Estimate
Result | DMS
(ASTGW) | ASTER
Client
(GDS) | None | None | The ASTER Gateway (ASTGW) sends back the Price Estimate result to the ASTER Ground Data System (GDS). | | M.4 | Send Product
Request | ASTER
User | ASTER
Client
(GDS) | None | None | The ASTER User decides to request a Product Request and invokes the ASTER Client to send a Product Request. | | M.5 | Submit
Product
Request | ASTER
Client
(GDS) | DMS
(ASTGW) | None | None | The ASTER Client submits the ASTER User's Product Request to the GDS-ECS Gateway in GDS ODL format via a INITIATOR_REQUEST_ID and specific socket. | | M.6 | Create Order | DMS
(ASTGW) | MSS
(SMC) | None | None | The ASTER Gateway sends a request to the MSS on the SMC to create an order and stores the INITIATOR_REQUEST_ID in the MSS order-tracking database. | Table 3.7.16.2-1. Interaction Table - Domain View: ASTER Price & Order Data (2 of 4) | (2 01 4) | | | | | | | | |----------|---|----------------------|----------------------------------|----------------|---------------------------|--|--| | Step | Event | Interface
Client | Interface
Provider | Data
issues | Step
Preconditi
ons | Description | | | M.7 | Send Product
Request | DMS
(ASTGW) | DMS
(V0
GTWAY)
(Remote) | None | None | The ASTER Gateway sends the product request for the granule stored at the remote DAAC to the V0 Gateway, via orderID:requestID ODL form. | | | M.8 | Send Product
Request | DMS
(ASTGW) | DMS
(V0
GTWAY) | None | None | The ASTER Gateway sends the Product Request for Landsat 7 products to the V0 Gateway. | | | M.9 | Send Product
Request | DMS
(V0
GTWAY) | DORRAN | None | None | The V0 Gateway sends the Product Request to the DORRAN Billing and Accounting System. | | | M.10 | Send Product
Request | DORRAN | DMS
(V0
GTWAY)
(Remote) | None | None | The DORRAN approves and sends the Product Request to the V0 Gateway at a Remote Site. | | | M.11 | Create Order | DMS
(V0
GTWAY) | MSS
(Remote) | None | None | The V0 Gateway sends a Create Order to the MSS in the tracking database. | | | M.12 | Acquire | DMS
(V0
GTWAY) | OMS | None | None | The V0 Gateway sends a
Request to Acquire data from
the Order Manager Server, via
one of the hard media, for the
Science User. | | | M.13 | Stage Data | OMS | DPL | None | None | The Order Manager Server submits staging request into DPL Database. DPL picks up request, stages data and queues a data staged notification in OMS Database. | | | M.14 | Submit Media
Distribution
Request (L7
B&A) | OMS
(Remote) | PDS | None | None | If OMS is configured to use
PDS for physical media
creation, OMS submits
requests for L7 B&A data to the
PDS. | | | M.15 | Submit Media
Distribution
Request
(non-L7) | OMS | PDS | None | None | If OMS is configured to use PDS for physical media creation, OMS submits requests for non-L7 data to the PDS. | | Table 3.7.16.2-1. Interaction Table - Domain View: ASTER Price & Order Data (3 of 4) | _ | | _ | _ | | | | |------------|-----------------------------------|-------------------------|--------------------------|----------------|--|--| | Step | Event | Interface
Client | Interface
Provider | Data
issues | Step
Preconditi
ons | Description | | M.16 | Maintain
Order Status | PDS | MSS | None | OMS is
configured
to use PDS
for physical
media
creation | The PDS updates the order status in the order-tracking database. | | M.17 | Maintain
Order Status | PDS
(Remote) | MSS
(Remote) | None | OMS
configured
to use PDS
for physical
media
creation | The PDS updates the order status in the order-tracking database. | | M.18 | Update Order
Status | MSS
(Remote) | MSS
(SMC) | None | OMS is
configured
to use PDS
for physical
media
creation. | The MSS updates the order status in the order-tracking replicate database. | | M.19.
A | Create Data
Tape | DSS
(Remote) | DAAC
Ops
(Remote) | None | OMS is
configured
to use PDS
for physical
media
creation. | The Data Server copies the file to a 8mm tape and marks the order as "Ready For Shipment". | | M.19.
B | Create Data
Tape | OMS | DAAC
Ops | None | Physical
Media
Creation is
configured
to use
OMS | OMS assigns physical device
and dispatches appropriate
module to create the physical
media. Upon successful
completion, the Operator puts
the media through QC. | | M.20 | Ship Tape to
User | DAAC
Ops
(Remote) | ASTER
User | None | None | The DAAC shipper collects the tape and the packing list, and generates a media-shipping label for delivery to the ASTER User. | | M.21 | Send
Distribution
Notice | OMS
(Remote) | ASTER
User | None | None | The OMS sends a distribution notice to the ASTER User. | | M.22 | Send Product
Status
Request | ASTER
User | ASTER
Client
(GDS) | None | None | The ASTER User decides to request a Product Request Status and invokes the ASTER Client to send a Product Request Status. | Table 3.7.16.2-1. Interaction Table - Domain View: ASTER Price & Order Data (4 of 4) | Step | Event | Interface
Client | Interface
Provider | Data
issues | Step
Preconditi
ons | Description | |------|--|--------------------------|--------------------------|----------------|---------------------------|--| | M.23 | Submit
Product
Status
Request | ASTER
Client
(GDS) | DMS
(ASTGW) | None | None | The ASTER Client submits the ASTER User's Product Status Request to the GDS-ECS Gateway in GDS ODL format via an INITIATOR_REQUEST_ID and specific socket. | | M.24 | Get Product
Status | DMS
(ASTGW) | MSS
(MCI -
SMC) | None | None | The ASTER Gateway requests the MSS to Get Product Status, which includes Order status and request status. | | M.25 | Return
Product
Status Result | DMS
(ASTGW) | ASTER
Client
(GDS) | None | None | The ASTER Gateway sends back the Product Status Result to the ASTER Client. | #### 3.7.16.3 ASTER Price & Order Data Thread Component Interaction Table Table 3.7.16.3-1 provides the Component Interaction: ASTER Price & Order Data. Table 3.7.16.3-1. Component Interaction Table: ASTER Price & Order Data Thread (1 of 7) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|--
-------------------------------|-------------------------------|--------------------|---| | M.1.1 | Startup
Aster GUI | ASTER
User | ASTER
Client
(GDS) | Command | The ASTER User invokes the Aster Client GUI. | | M.1.2 | Submit
Price
Estimate
Request | ASTER
User | ASTER
Client
(GDS) | GUI | The ASTER User selects Price Estimate Request. After selecting granules, the query is submitted to the ASTER Gateway. | | M.2.1 | ASTGW
Price
Estimate
Request | ASTER
Client
(GDS) | EcDmAster
ToEcsGate
way | ODL over socket | Upon receiving the Price Estimate Request, the ASTER GDS-ECS Gateway computes a price estimate using the cost of an L7 product from the configuration files. The price of all other products is zero. | | M.2.2 | Compute predicted completion date. | EcDmAster
ToEcsGate
way | EcDmAster
ToEcsGate
way | None | The predicted completion date is computed as the number of days to complete the order from the configuration file. | Table 3.7.16.3-1. Component Interaction Table: ASTER Price & Order Data Thread (2 of 7) | | | 1 | · · | | | |-------|------------------------------|-------------------------------|-------------------------------|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | M.3.1 | Price
Estimate
Result | EcDmAster
ToEcsGate
way | ASTER
GDS
(Client) | ODL over
socket | Once the results are computed, it is translated into ODL and passed back to the ASTER Client. The ASTER Client then displays the results of the query to the user. | | M.4.1 | Select
Product
Request | ASTER
User | ASTER
Client
(GDS) | GUI | The ASTER User selects a set of data granules to order by media such as 8mm. When this is complete, it is submitted to the ASTER Gateway. | | M.5.1 | Aster
Gateway
order | ASTER
Client
(GDS) | EcDmAster
ToEcsGate
way | ODL over socket | The ASTER Ground Data System (GDS) submits an order to the ASTER Gateway by converting the order into an ODL structure and passing that structure to a socket provided by the gateway. The correct socket is determined from configuration information in the valids file. The order contains contact, shipping information together with authenticator and initial request ID. | | M.6.1 | Establish
ECS user | EcDmAster
ToEcsGate
way | EcMsAcRe
gUserSrvr | CCS
Middleware | The ASTER Gateway retrieves the user Profile using the ECS authenticator from the ODL message, which is an encrypted User ID and Password. The User Registration database is replicated across DAACs, so the connection is made to the local User Registration Server that is at the SMC. | Table 3.7.16.3-1. Component Interaction Table: ASTER Price & Order Data Thread (3 of 7) | | 1 | 1 | 10 | or /) | | |-------|---------------------------------|-------------------------------|----------------------------|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | M.6.2 | Request
Attribute
Mapping | EcDmAster
ToEcsGate
way | EcDmDictS
erver | CtLib | The ASTER Gateway translates the ASTER terms from ODL into ECS names for request submittal using the Data Dictionary database. The interface is directly to the Data Dictionary database. The database name is retrieved from a configuration file. | | M.6.3 | Create
Tracked
Order | EcDmAster
ToEcsGate
way | EcMsAcOr
derSrvr | CCS
Middleware | The ASTER Gateway creates an order object through a local (SMC) Order Tracking Server and records the initial request ID into the Order Tracking database. The initial status is set to "Pending." | | M.6.4 | Store
Tracked
Order | EcMsAcOr
derSrvr | Sybase
ASE | CtLib | The order is saved to the order database at SMC. | | M.6.5 | Create
Tracked
Request | EcDmAster
ToEcsGate
way | EcMsAcOr
derSrvr | CCS
Middleware | The ASTER Gateway creates each individual request object through a local (SMC) Order Tracking Server by linking it to the order object for order tracking purpose. | | M.6.6 | Store
Tracked
Request | EcMsAcOr
derSrvr | Sybase
ASE | CtLib | The tracked request is saved to the order database at SMC. | | M.7.1 | Request
Non-L7
Product | EcDmAster
ToEcsGate
way | EcDmV0To
EcsGatewa
y | ODL over socket | The ASTER Gateway sends non-L7 data granule order to remote DAAC by a socket connection to the V0 Gateway, where the requested data is archived. The correct V0 Gateway to be connected is determined by the ASTER Gateway. | | M.8.1 | Request L7
Product | EcDmAster
ToEcsGate
way | EcDmV0To
EcsGatewa
y | CCS
Middleware | The ASTER Gateway sends the product order request to the V0 Gateway based on the data being L70R WRS. | | M.9.1 | Acquire to DORRAN | EcDmV0To
EcsGatewa
y | DORRAN | ODL over socket | The V0 Gateway sends the "acquire" to the DORRAN system. | | M.9.2 | B & A
Verification | EcDmV0To
EcsGatewa
y | DORRAN
Comp. | Operator | DORRAN validates the request by checking the account level of the requester and the required funding level of the request. | Table 3.7.16.3-1. Component Interaction Table: ASTER Price & Order Data Thread (4 of 7) | | | 1 | T | | | |--------|---|-------------------------------------|-------------------------------------|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | M.10.1 | Acquire to
V0-ECS
Gateway | DORRAN | EcDmV0To
EcsGatewa
y (Remote) | ODL over
socket | The Operator validates the order and DORRAN forwards all the remaining granules to the V0 Gateway over a specific socket to a remote DAAC, such as EDC. | | M.11.1 | Create
5Tracked
Order | EcDmV0To
EcsGatewa
y | EcMsAcOr
derSrvr | CCS
Middleware | The V0 Gateway creates an order object at the Order Tracking Server, sets the order ID by the one, which comes from the ASTER Gateway or DORRAN. | | M.11.2 | Store
Tracked
Order | EcMsAcOr
derSrvr | Sybase
ASE | CtLib | The tracked order is saved to the order database at the remote DAAC. | | M.11.3 | Create
Tracked
Request | EcDmV0To
EcsGatewa
y (Remote) | EcMsAcOr
derSrvr | CCS
Middleware | The V0 Gateway creates a request object at the Order Tracking Server, sets the request ID by the one, which comes from the ASTER Gateway or DORRAN. | | M.11.4 | Store
Tracked
Request | EcMsAcOr
derSrvr | Sybase
ASE | CtLib | The tracked request is saved to the order database at the remote DAAC. | | M.12.1 | Create
Order and
Request | EcDmV0To
EcsGatewa
y | EcMsAcOr
derSrvr | CCS
Middleware | The V0 Gateway creates an order and request from MSS Order Tracking interface and marks order source as "V0GW." | | M.12.2 | Submit
Request | EcDmV0To
EcsGatewa
y | SYBASE
ASE | CtLib | The V0 Gateway submits a request into the OMS Database. | | M.13.1 | Validate
Request | EcOmOrde
rManager | SYBASE
ASE | CtLib | The Order Manager retrieves request from its Database and validates the request against criteria. | | M.13.2 | Submit
insert
action | EcOmOrde
rManager | SYBASE
ASE | CtLib | The Order Manager Server queues an insert action in DPL Database for each granule of a request that is not found on the DPL disk. | | M.13.3 | Send
granule
staged
notification | DPL | SYBASE
ASE | CtLib | The DPL queues a granule staged action in the OMS Database with a status and status detail. | Table 3.7.16.3-1. Component Interaction Table: ASTER Price & Order Data Thread (5 of 7) | Ston | Event | Interface | Interface | Interface | Description | |--------------|--|--------------------------------|------------------------------------|-------------------|--| | Step | Event | Client | Provider | Mech. | Description | | M.14.1 | Submit
Request
(L7 B&A) | EcOmOrde
rManager | EcPdPDSI
SServer | socket | Assuming physical media creation is configured to use PDS, the Order Manager submits L7 B&A requests to EcPdPDSISServer via socket. | | M.15.1 | Submit
Request
(non-L7) | EcOmOrde
rManager | EcPdPDSI
SServer | socket | Assuming physical media creation is configured to use PDS, the Order Manager submits non-L7 requests to the EcPdPDSISServer after the requests are staged to the DPL storage. | | M.16.1 | Update
Tracked
Request
Status | EcOmOrde
rManager | Sybase
ASE | CtLib | The Order Manager updates the status of the tracked request to "Active", "Transferring", "Shipped", etc. in Order
Tracking Database. | | M.16.2 | Update
Tracked
Status | Sybase
ASE | Sybase
ASE | CtLib | OMS stored procedure calls MSS stored procedure to update order tracking status. | | M.17.1 | Update
Tracked
Request
Status | EcPdPDSI
SServer | Sybase
ASE | JDBC | Assuming physical media creation is configured to use PDS, theEcPdPDSISServer updates the status of the tracked request to "Active", "Transferring", "Shipped", etc. by calling MSS stored procedure. | | M.18.1 | Remote
Update
Order
status | Sybase
ASE | Sybase
ASE | CtLib | The Sybase ASE database trigger at the remote DAAC, such as EDC, is fired upon the update at the step M.13.2. This trigger updates the order status at the SMC Order Tracking database. | | M.18.2 | Compress
Disk | EcDsDistri
butionServ
er | EcDsStReq
uestManag
erServer | CCS
Middleware | The Data Distribution Server asks the Staging Disk Server via the Storage Management Request Manager to compress the staging disk. | | M.19.1
.A | Create
requested
hard media | EcPdPDSI
SServer | Oracle | CCS
Middleware | Assuming physical media creation is configured to use PDS, the PDSIS server passes the request to the PDSSA software for media creation. The Operator activates the request, mounts the media, dismounts media and performs Quality Control (QC) on the media. Upon successful Quality Control, a tape label is printed. | Table 3.7.16.3-1. Component Interaction Table: ASTER Price & Order Data Thread (6 of 7) | (6 Of 7) | | | | | | | | |--------------|---|------------------------------------|-------------------------------|--------------------|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | M.19.1
.B | Create
Requested
Hard Media | DAAC Ops | None | EcOmGui | Assuming physical media creation is configured to use OMS, Operator follows OMS actions to load media for creation and for QC. Upon successful completion, the request status is updated to "Ready for Shipment". | | | | M.20.1 | Determine
if request is
ready for
shipping | DAAC Ops - Distribution Technician | PDSISMT
OIX | GUI | Assuming physical media creation is configured to use PDS, the state of the request is updated to "Ready for shipment" upon successful completion. A packing list and shipping label are printed. The Operator marks the request as shipped. | | | | M.20.2 | Ship Tapes | DAAC Ops - Data Technician | DAAC Ops - Data Technician | Internal | Using commercial shipping vendors (determined by DAAC policy), the DAAC Data Technician labels the tape, packages the tape(s) and packing list, labels the package and ships to the address provided with the request. | | | | M.20.3 | Tapes
Shipped | DAAC Ops
- Data
Technician | ASTER
User | Mail | Tapes are physically shipped to the ASTER User. | | | | M.21.1 | Send
Distribution
Notice | EcOmOrde
rManager | ASTER
User | Email | Assuming physical media creation is configured to use PDS, the Order Manager Server sends a distribution notice to the ASTER User when the request is shipped. PDS also sends a DN. | | | | M.22.1 | Select
Product
Status
Request | ASTER
User | ASTER
Client
(GDS) | GUI | The ASTER User selects an order status request by specifying an initial request ID and submits it to the ASTER Gateway. | | | | M.23.1 | Status to
Aster
Gateway | ASTER
Client
(GDS) | EcDmAster
ToEcsGate
way | ODL over socket | The ASTER GDS submits an order to the ASTER Gateway by converting the order into an ODL structure and passing that structure to a socket provided by the gateway. The correct socket is determined from configuration information in the valids file. The product status request contains the ASTER User's authenticator and initial request ID. | | | Table 3.7.16.3-1. Component Interaction Table: ASTER Price & Order Data Thread (7 of 7) | _ | | | · · | U. 1) | | |--------|--|-------------------------------|--------------------------|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | M.24.1 | Establish
ECS user | EcDmAster
ToEcsGate
way | EcMsAcRe
gUserSrvr | CCS
Middleware | The ASTER Gateway retrieves the user Profile using the ECS authenticator from the ODL message, which is an encrypted User ID and Password. The User Registration database is replicated across DAACs, so the connection is made to the local User Registration Server, which is at the SMC. | | M.24.2 | Retrieve
Tracked
Order | EcDmAster
ToEcsGate
way | EcMsAcOr
derSrvr | CCS
Middleware | The ASTER Gateway retrieves the order object through a local (SMC) Order Tracking Server, by providing the initial request ID. | | M.24.3 | Retrieve
Tracked
Order | EcMsAcOr
derSrvr | Sybase
ASE | CtLib | The tracked order is retrieved from the order database at SMC. | | M.24.4 | Retrieve
Tracked
Request | EcDmAster
ToEcsGate
way | EcMsAcOr
derSrvr | CCS
Middleware | The ASTER Gateway retrieves each individual request object through a local (SMC) Order Tracking Server. | | M.24.5 | Retrieve
Tracked
Request | EcMsAcOr
derSrvr | Sybase
ASE | CtLib | The tracked request is retrieved from the order database at the SMC. | | M.25.1 | Return
Order
Status to
Aster User | EcDmAster
ToEcsGate
way | ASTER
GDS
(Client) | ODL over
Socket | The ASTER Gateway first maps the ECS order status code to the ASTER GDS product order status code, then converts the order status to an ODL structure and sends the ODL structure to the ASTER Client via a socket. | #### 3.7.17 User View and Order ASTER GDS Data Thread This thread shows how an ECS user can obtain information on attributes of specified data sets, browse specified data sets and place an order for ASTER products stored at GDS. # 3.7.17.1 User View and Order ASTER GDS Data Thread Interaction Diagram – Domain View Figure 3.7.17.1-1 depicts the View and Order ASTER GDS Data Interaction. Figure 3.7.17.1-1. User View and Order ASTER GDS Data Interaction Diagram ## 3.7.17.2 User View and Order ASTER GDS Data Thread Interaction Table – Domain View Table 3.7.17.2-1 provides the interaction Domain View: User View and Order ASTER GDS Data. Table 3.7.17.2-1. Interaction Table - Domain View: User View and Order ASTER GDS Data (1 of 3) | | _ | | | Dala (I | | | |------|--------------------------------|---------------------|-----------------------|----------------|---------------------------|--| | Step | Event | Interface
Client | Interface
Provider | Data
issues | Step
Precondi
tions | Description | | N.1 | Directory
Search
Request | Science
User | CLS
(EDG) | None | None | A Science User decides to request a Directory Search and invokes the Netscape Navigator and navigates to the EDG and sends a Directory Request. | | N.2 | Directory
Search
Request | CLS
(EDG) | DMS
(ASTGW) | None | None | The EDG submits the Science User's Directory request to the ECS-ASTER Gateway in EDG ODL format via a specific socket. | | N.3 | Directory
Search
Request | DMS
(ASTGW) | DMS
(DDICT) | None | None | The ASTER Gateway (ASTGW) queries the Data Dictionary (DDICT), using the parameters specified in the request ODL, for the Directory results. | | N.4 | Directory
Search
Result | DMS
(DDICT) | DMS
(ASTGW) | None | None | The Data Dictionary sends results to the ASTER Gateway. | | N.5 | Directory
Search
Result | DMS
(ASTGW) | CLS
(EDG) | None | None | The ASTER Gateway sends the results to the EDG, which displays them to the Science User. | | N.6 | Inventory
Search | Science
User | CLS
(EDG) | None | None | A User decides to search for
ASTER Ground Data System
(GDS) data. He/She invokes the
Netscape Navigator and
navigates to the EDG and
specifies search parameters. | | N.7 | Inventory
Search | CLS
(EDG) | DMS
(ASTGW) | None | None | The EDG submits the Science User's Search criteria to the ECS-ASTER Gateway in EDG ODL format via a specific socket. | | N.8 | Inventory
Search | DMS
(ASTGW) | DMS
(DDICT) | None | None | The ASTER Gateway queries the Data Dictionary for the equivalent ASTER mappings for the V0 attributes/values specified in the request. | | N.9 | Inventory
Search | DMS
(DDICT) | DMS
(ASTGW) | None | None | The Data Dictionary returns ASTER equivalents of the specified V0 attributes/values to the ASTER Gateway. | | N.10 | Inventory
Search | DMS
(ASTGW) | ASTER
GDS | None | None | The ASTER Gateway submits the request to the ASTER GDS. | Table 3.7.17.2-1. Interaction Table - Domain View: User View and Order ASTER GDS Data (2 of 3) | GDS Data (2 of 3) | | | | | | | | | |-------------------|--------------------------------|---------------------|-----------------------|----------------|---------------------------
---|--|--| | Step | Event | Interface
Client | Interface
Provider | Data
issues | Step
Precondi
tions | Description | | | | N.11 | Inventory
Search
Result | ASTER
GDS | DMS
(ASTGW) | None | None | The ASTER GDS returns the results to the ASTER Gateway in the ASTER ODL form. | | | | N.12 | Inventory
Search
Results | DMS
(ASTGW) | DMS
(DDICT) | None | None | The ASTER Gateway queries the Data Dictionary for the equivalent V0 attributes/values for ASTER attributes/values it received from the ASTER GDS. | | | | N.13 | Inventory
Search
Results | DMS
(DDICT) | DMS
(ASTGW) | None | None | The Data Dictionary returns the V0 equivalents of the ASTER attributes/values to the ASTER Gateway. | | | | N.14 | Inventory
Search
Result | DMS
(ASTGW) | CLS
(EDG) | None | None | The ASTER Gateway sends back the results to the EDG, which displays them to the Science User. | | | | N.15 | Browse
Request | Science
User | CLS
(EDG) | None | None | A User decides some of these granules might be of interest, so before ordering them he/she decides to get a browse image of one to verify. | | | | N.16 | Browse
Request | CLS
(EDG) | DMS
(ASTGW) | None | None | The EDG submits an Ftp Browse Request to the ASTER Gateway in V0 ODL format via a specific socket interface. | | | | N.17 | Acquire
Browse | DMS
(ASTGW) | ASTER
GDS | None | None | The ASTER Gateway translates the V0 ODL into ASTER ODL and sends it to the ASTER GDS server. | | | | N.18 | Browse
Result | ASTER
GDS | DMS
(ASTGW) | None | None | The ASTER GDS sends the Browse results in ASTER ODL form to the ASTER Gateway. | | | | N.19 | Browse
Result | DMS
(ASTGW) | CLS
(EDG) | None | None | The ASTER Gateway converts the ASTER ODL into EDG ODL and sends the results to the EDG. | | | | N.20 | Product
Request | Science
User | CLS
(EDG) | None | None | A User decides to order the Product. He/She Invokes the Netscape Navigator and navigates to the EDG and orders the product. | | | Table 3.7.17.2-1. Interaction Table - Domain View: User View and Order ASTER GDS Data (3 of 3) | Step | Event | Interface
Client | Interface
Provider | Data
issues | Step
Precondi
tions | Description | |------|--------------------------------|--|---|----------------|---------------------------|---| | N.21 | Product
Request | CLS
(EDG) | DMS
(ASTGW) | None | None | The EDG submits the Science User's Product Request to the ASTER Gateway in ODL format via a specific socket. | | N.22 | Product
Request
Order | DMS
(ASTGW) | MSS (Account ability Managem ent Service) | None | None | The ASTER Gateway sends a message to the MSS to create an order ID. | | N.23 | Product
Request
Order Id | MSS
(Account
ability
Managem
ent
Service) | DMS
(ASTGW) | None | None | The MSS sends the ASTER Gateway the order ID for the product request. | | N.24 | Product
Request | DMS
(ASTGW) | ASTER
GDS | None | None | The ASTER Gateway translates the product request from V0 ODL to ASTER ODL and submits that query to the ASTER Ground Data System (GDS). | | N.25 | Product
Result | ASTER
GDS | DMS
(ASTGW) | None | None | The ASTER GDS sends an acknowledgment to the ASTER Gateway upon product request receipt. | | N.26 | Product
Result | DMS
(ASTGW) | CLS
(EDG) | None | None | The ASTER Gateway sends a message to the client acknowledging the receipt of the product request. | # 3.7.17.3 User View and Order ASTER GDS Data Thread Component Interaction Table Table 3.7.17.3-1 provides the Component Interaction: User View and Order ASTER GDS Data Table 3.7.17.3-1. Component Interaction Table: User View and Order ASTER GDS Data (1 of 4) | | | | De | ita (1 of 4) | | |-------|---|-------------------------------|-------------------------------|-------------------------|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | N.1.1 | Submit a
Directory
Search | EDG User | EDG Client | Command | The EDG user invokes an EDG Client in a Netscape session and sends a directory search request to the ASTER Gateway. | | N.2.1 | Receive a
Directory
Search
Request | EDG
Client | EcDmEcsT
oAsterGate
way | CCS
Middleware | The ASTER Gateway receives the request on a specific port and socket on which it is listening. The request is an ODL structure. | | N.2.2 | User
Profile | EcDmEcs
ToAsterG
ateway | EcMsAcRe
gUserSrvr | CCS
Middleware | Upon receiving the request, the ASTER Gateway retrieves the User Profile using the ECS authenticator from the ODL message. The User Registration Server is replicated across DAACs, so a connection is made to the local User Registration Server. | | N.3.1 | Connect to DDICT | EcDmEcs
ToAsterG
ateway | Sybase
ASE | CtLib | The ASTER Gateway connects to the Data Dictionary database to run a SQL, based on the criteria in the request ODL. | | N.3.2 | Run Query
against
DDICT | EcDmEcs
ToAsterG
ateway | Sybase
ASE | CtLib | The SQL query is run against the Data Dictionary database, which returns the metadata of all the granules satisfying the search criteria. | | N.4.1 | Retrieve results | Sybase
ASE | EcDmEcsT
oAsterGate
way | CCS
Middleware | The ASTER Gateway retrieves the results of the database query and puts them in an ODL structure to be sent to an ASTER client. | | N.4.2 | Create
ODL | EcDmEcs
ToAsterG
ateway | EcDmEcsT
oAsterGate
way | LibIK | The ASTER Gateway formats granule metadata into an ODL structure. | | N.5.1 | Send
Results | EcDmEcs
ToAsterG
ateway | EDG Client | ODL,
Over
Sockets | The results in ODL are sent to the ASTER client via the same socket on which it originally received the request. | | N.6.1 | Submit an
Inventory
Search
request | Science
User | EDG Client | Command | The EDG user invokes an EDG Client in a Netscape session and sends an inventory search request to the ASTER Gateway. | | N.7.1 | Receive a
Directory
Search
Request | EDG
Client | EcDmEcsT
oAsterGate
way | CCS
Middleware | The ASTER Gateway receives the request on a specific port and socket on which it is listening. The request is an ODL structure. | Table 3.7.17.3-1. Component Interaction Table: User View and Order ASTER GDS Data (2 of 4) | г | T | 1 | | ila (2 01 4) | | |--------|-------------------------------|-------------------------------|-------------------------------|-------------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | N.8.1 | Connect to DDICT | EcDmEcs
ToAsterG
ateway | Sybase
ASE | CtLib | The ASTER Gateway connects to the Data Dictionary database to run a SQL, based on the criteria in the request ODL. | | N.8.2 | Run Query
against
DDICT | EcDmEcs
ToAsterG
ateway | Sybase
ASE | CtLib | The SQL query is run against the Data Dictionary database, which returns the mapping of the V0 to ASTER attributes and key words. | | N.9.1 | Retrieve results | Sybase
ASE | EcDmEcsT
oAsterGate
way | CCS
Middleware | The ASTER Gateway retrieves the results of the database query and puts them in an ODL structure to be sent to the ASTER GDS server. | | N.9.2 | Create
ODL | EcDmEcs
ToAsterG
ateway | EcDmEcsT
oAsterGate
way | LibIK | The ASTER Gateway formats the request in ODL to be sent to the ASTER GDS server. | | N.10.1 | Send
Request | EcDmEcs
ToAsterG
ateway | ASTER
GDS | ODL,
Over
Sockets | The request ODL is sent to the ASTER GDS server via sockets. | | N.11.1 | Send
Result | ASTER
GDS | EcDmEcsT
oAsterGate
way | CCS
Middleware | The ASTER GDS server sends the result ODL over sockets to ASTER Gateway. | | N.11.2 | Receive
result ODL | EcDmEcs
ToAsterG
ateway | EcDmEcsT
oAsterGate
way | LibIK | The ASTER Gateway receives the result ODL and analyses it. It extracts the Aster attributes. | | N.12.1 | Inventory
Search
Result | EcDmEcs
ToAsterG
ateway | SYBASE
ASE | CtLib | The ASTER Gateway sends the ASTER attributes in the received ODL to the Data Dictionary database for getting the V0 equivalents. | | N.12.2 | Connect to DDICT | EcDmEcs
ToAsterG
ateway | Sybase
ASE | CtLib | The ASTER Gateway connects to the Data Dictionary database to run a SQL, based on the criteria in the result ODL. | | N.12.3 | Run Query
against
DDICT | EcDmEcs
ToAsterG
ateway | Sybase
ASE | CtLib | The SQL query is run against the Data Dictionary database, which returns the V0 equivalents of the ASTER attributes input to it. | | N.13.1 | Retrieve results | Sybase
ASE | EcDmEcsT
oAsterGate
way | CtLib | The ASTER Gateway retrieves the results of the database query and puts them in an ODL structure to be sent to the client. | | N.14.1 | Create
ODL | EcDmEcs
ToAsterG
ateway | EcDmEcsT
oAsterGate
way | LibIK | The ASTER Gateway formats the result in ODL. | Table 3.7.17.3-1. Component Interaction Table: User View and Order ASTER GDS Data (3 of 4) | _ | 7 | | De | ita (3 of 4) | | |--------
--|-------------------------------|-------------------------------|-------------------------|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | N.14.2 | Send
Results | EcDmEcs
ToAsterG
ateway | EDG Client | ODL,
Over
Sockets | The results in ODL are sent to the client via sockets. | | N.15.1 | Submit a
Browse
Request | Science
User | EDG Client | Command | The Science user invokes an EDG Client in a Netscape session and sends a browse request to go to the ASTER Gateway. | | N.16.1 | Receive a
Browse
Request | EDG
Client | EcDmEcsT
oAsterGate
way | CCS
Middleware | The ASTER Gateway receives the request on a specific port and socket on which it is listening. The request is an ODL structure. | | N.16.2 | Format
Browse
Request | EcDmEcs
ToAsterG
ateway | EcDmEcsT
oAsterGate
way | LibIK | The ASTER Gateway reformats the request ODL so that it can be sent to the ASTER GDS server. | | N.17.1 | Send
Browse
request to
server | EcDmEcs
ToAsterG
ateway | ASTER
GDS | CCS
Middleware | The ASTER Gateway sends the browse request to the ASTER GDS server. | | N.18.1 | Receive
Browse
results | EcDmEcs
ToAsterG
ateway | Sybase
ASE | CtLib | The ASTER Gateway receives the results from the ASTER GDS. | | N.19.1 | Send
Results | EDG
Client | EcDmEcsT
oAsterGate
way | CCS
Middleware | The ASTER Gateway sends the result to the client. | | N.20.1 | Creates
Product
Request | Science
User | EDG Client | Command | The EDG user decides to order the product. The user fills out the order form specifying the desired granule(s), and how the order should be fulfilled, and information about the user. The EDG Web Client validates the user's input and requests a correction, if necessary. | | N.21.1 | Submits
Product
Request
To
ASTGW | EDG
Client | EcDmEcsT
oAsterGate
way | CCS
Middleware | The EDG Web Client submits the Science User's product request to the ASTER Gateway in ODL format. | | N.22.1 | ASTGW
Validates
the request | EcDmEcs
ToAsterG
ateway | EcDmEcsT
oAsterGate
way | Internal | The ASTER Gateway validates the request to ensure that the request is valid before processing it. | | N.22.2 | ASTGW
Creates
Order
tracking Id | EcDmEcs
ToAsterG
ateway | Sybase
ASE | CtLib | The ASTER Gateway sends order tracking information to the MSS to create an order-tracking ID. | Table 3.7.17.3-1. Component Interaction Table: User View and Order ASTER GDS Data (4 of 4) | | I | ı | 1 | 1 (7 01 7) | T 1 | |--------|---|-------------------------------|---------------------------|------------------------|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | N.23.1 | ASTGW
Get Product
Request
Order Id | Sybase
ASE | EcDmEcsToA
sterGateway | CtLib | The MSS sends the ASTER Gateway the order-tracking ID for the product request. | | N.24.1 | ASTGW Converts Product Request ODL to Aster format | EcDmEc
sToAster
Gateway | EcDmEcsToA
sterGateway | Internal | The ASTER Gateway converts the Product Request in the form V0 ODL to ASTER ODL. | | N.24.2 | ASTGW
sends the
product
request to
ASTER
GDS | EcDmEc
sToAster
Gateway | ASTER GDS | CCS
Middleware | The ASTER Gateway submits the product request to the ASTER GDS. | | N.25.1 | ASTGW
Receives
acknowledg
ment | ASTER
GDS | EcDmEcsToA
sterGateway | CCS
Middleware | The ASTER GDS sends an acknowledgment to the ASTER Gateway upon Product Request receipt. | | N.26.1 | ASTGW prepares the acknowledg ment information | EcDmEc
sToAster
Gateway | EcDmEcsToA
sterGateway | Internal | The ASTER Gateway creates an acknowledgment in the form of V0 ODL. The acknowledgment contains the result of request processing, the EDC contact address, and the order tracking ID. | | N.26.2 | ASTGW Sends acknowledg ment to the client | EcDmEc
sToAster
Gateway | EDG Client | CCS
Middleware | The ASTER Gateway sends the acknowledgment to the EDG client. | #### 3.7.18 ASTER Attached DPRs (Standing Orders) Thread This thread shows how the ECS supports user requests for attaching standing, on-demand processing orders to a Data Acquisition Request (DAR). The processing and distribution of the on-demand requests that result from these orders is identical to standard on-demand production discussed in Section 3.7.8. This new capability is an extension of the existing on-demand capability. With this new option, users who submit a DAR can specify any higher level processing they want to be performed on the resulting granules. This request for higher level processing, to be performed on DAR output, can be placed at either DAR submission time, or at a later date. Rather than placing an active order for granules that have not yet been generated, the standing order can be considered a template. When the granule(s) of the specified type are received by ECS, the standing order causes an on-demand order to be generated without additional actions by the user. The standing order continues to be in force for as long as the DAR is active. After the DAR expires, the standing order eventually is deactivated, and then finally removed from production. ## 3.7.18.1 ASTER Attached DPRs (Standing Orders) Thread Interaction Diagram - Domain View Figure 3.7.18.1-1 depicts the ASTER Attached DPRs (Standing Orders) Interaction. Figure 3.7.18.1-1. ASTER Attached DPRs (Standing Orders) Interaction Diagram ## 3.7.18.2 ASTER Attached DPRs (Standing Orders) Thread Interaction Table - Domain View Table 3.7.18.2-1 provides the Interaction - Domain View: ASTER Attached DPRs (Standing Orders). Table 3.7.18.2-1. Interaction Table - Domain View: ASTER Attached DPRs (Standing Orders) (1 of 3) | | (Standing Orders) (1 of 3) | | | | | | | | | |------|--|-------------------------|--|-------------|---|---|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Data Issues | Step
Preconditi
ons | Description | | | | | O.1 | Request
DAR | Science
User | CLS
Java DAR
Tool (JDT) | None | The requestor must be an authorized user. | The scientist initiates the Data Acquisition Request (DAR). | | | | | 0.2 | Request
DAR | CLS
(JDT) | ASTER
GDS
(Japan) | None | None | The DAR is passed to the ASTER Ground Data System (GDS) in Japan. | | | | | O.3 | Return
DAR ID | ASTER
GDS
(Japan) | CLS
(JDT) | None | None | The DAR ID is returned to the Java DAR Tool. | | | | | 0.4 | Return
DAR ID | CLS
(JDT) | Science
User | None | None | The DAR ID is returned to the scientist. | | | | | O.5 | Invoke
Attached
DPR
Request | CLS (JDT) | CLS
(ODFRM) | None | DAR ID,
expiration
time, and
production
name must
be
available. | The On-Demand Product
Request Form (ODFRM) is
called from the Java DAR
Tool. | | | | | O.6 | Submit
Attached
DPR | Science
User | CLS
(ODFRM) | None | None | The user submits a product request via the On-Demand Product Request Form. | | | | | 0.7 | Submit
Standing
Order | CLS
(ODFRM) | PLS
(ODPRM) | None | None | All the user's selections for
the Attached DPRs
Production Request are
stored in a GI Parameter
List, which is passed to an
On-Demand Production
Request Manager
(ODPRM - a PLS server). | | | | | O.8 | Create
MSS
Tracking
Element | PLS
(ODPRM) | MSS (Accounta bility Managem ent Service) | None | None | A standing order is created in the MSS database. | | | | | O.9 | Initialize
Request
Status (to
"Awaiting
DAR
Results") | PLS
(ODPRM) | MSS
(Accounta
bility
Managem
ent
Service) | None | None | The status of the Attached DPRs request is initialized (to "Awaiting DAR Results"). | | | | Table 3.7.18.2-1. Interaction Table - Domain View: ASTER Attached DPRs (Standing Orders) (2 of 3) | | T. | I | (Starium) | (Oraers) | 2 01 3) | | |------|--|-------------------------|--|--------------------------------------|--------------------------------|--| | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Precondi
tions | Description | | O.10 | Subscribe | PLS
(ODPRM) | CSS
(SBSRV) | None | None | The PLS places a subscription on the input products desired by the user. | | 0.11 | Order ID
Returned | PLS
(ODPRM) | CLS
(ODFRM) | None | None | The order ID is returned to the On-Demand Product Request Form. | | O.12 | Order
Confirmation | CLS
(ODFRM) | Science
User | None | None | The On-Demand Product Request Form notifies the science user that the request has been submitted.
| | O.13 | Insert L1B
(via Ingest) | ASTER
GDS
(Japan) | DSS
(SDSRV) | This is
newly
received
data | Waiting
for this
data | This data has just been received from Japan. | | O.14 | Insert Event | DSS
(SDSRV) | CSS
(SBSRV) | None | None | Trigger the insert of the desired product data. Since the PLS placed the subscription for the desired product, the PLS receives the Subscription Notification. | | O.15 | Subscription
Notification | CSS
(SBSRV) | PLS
(ODPRM) | None | None | The Subscription Server notifies the PLS when data is available in the archive by a subscription notification. | | O.16 | Submit On
Demand
Information | PLS
(ODPRM) | PLS
(ODPRM) | The product has arrived from Japan. | Waiting
for this
product | The order is processed as a standard on-demand order. That is, the fourth On Demand Manager thread wakes up and starts processing on-demand information. | | O.17 | Update
status (to
"Awaiting
More DAR
Results") | PLS
(ODPRM) | MSS
(Accounta
bility
Managem
ent
Service) | None | None | Update the order-tracking element (to "Awaiting More DAR Results"). | | O.18 | Create MSS Order Tracking Elements for High Level Products | PLS
(ODPRM) | MSS
(Accounta
bility
Managem
ent
Service) | None | None | The PLS creates order-tracking elements. | Table 3.7.18.2-1. Interaction Table - Domain View: ASTER Attached DPRs (Standing Orders) (3 of 3) | Step | Event | Interface
Client | Interface
Provider | Data
Issues | Step
Preconditions | Description | |------|-------------------------------------|---------------------|-----------------------|----------------|-----------------------|---| | O.19 | DAR
information | PLS
(ODPRM) | Science
User | None | None | Send e-mail notification to
the Science User,
notifying them of the DAR
ID, DAR expiration time,
order ID, and input
granule UR. | | O.20 | Subscribe | PLS
(ODPRM) | CSS
(SBSRV) | None | None | The PLS places a subscription on the output products desired by the user. | | O.21 | Submit
DPRs | PLS
(ODPRM) | DPS
(PRONG) | None | None | The DPR(s) for PGEs to produce the requested products are created and submitted to the DPS. | | O.22 | High Level
Order
Confirmation | PLS
(ODPRM) | Science
User | None | None | Send email notification to
the Science User,
notifying him/her that the
requested product(s)
have been produced. | ## 3.7.18.3 ASTER Attached DPRs (Standing Orders) Thread Component Interaction Table Table 3.7.18.3-1 provides the Component Interaction: ASTER Attached DPRs (Standing Orders). Table 3.7.18.3-1. Component Interaction Table: ASTER Attached DPRs (Standing Orders) (1 of 3) | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | |-------|---------------------------------|-------------------------|---|--------------------|---| | 0.1.1 | Request
DAR | Science
User | EcClWbJdt | GUI | The scientist initiates the Data Acquisition Request (DAR). | | O.2.1 | Request
DAR | EcClWbJdt | ASTER
GDS
(Japan) | CCS
Middleware | The DAR is passed to the ASTER Ground Data System (GDS) in Japan. | | O.3.1 | Return DAR
ID | ASTER
GDS
(Japan) | EcClWbJdt | CCS
Middleware | The DAR ID is returned to the Java DAR Tool (JDT). | | O.4.1 | Return DAR
ID | EcClWbJdt | Science
User | GUI | The DAR ID is returned to the scientist. | | O.5.1 | Invoke On-
Demand
Request | EcClWbJdt | EcClOdPro
ductReque
st
(ODFRM) | GUI | The On-Demand Product Request Form is called from the JDT. | Table 3.7.18.3-1. Component Interaction Table: ASTER Attached DPRs (Standing Orders) (2 of 3) | | Orders) (2 of 3) | | | | | | | | |--------|---|---|-------------------------------------|--------------------|---|--|--|--| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | | | | O.6.1 | Submit
Attached
DPR | Science
User | EcClOdProd
uctRequest
(ODFRM) | GUI | The user submits a product request via the On-Demand Product Request Form. | | | | | O.7.1 | Submit
Standing
Order | EcClOdPro
ductReque
st
(ODFRM) | EcPlOdMgr
(ODPRM) | None | The standing order is submitted to the On-Demand Production Request Manager (ODPRM). This process is identical to that documented in the ASTER On-Demand High-Level production thread. Standing Orders is an extension of High Level production. Refer to Section 3.7.8.3 Steps E.5.1 - E.6.10. | | | | | O.8.1 | Create MSS
Standing
Order | EcPlOdMgr
(ODPRM) | EcMsAcOrd
erSrvr | CCS
Middleware | A standing order is created in the MSS database. | | | | | O.9.1 | Initialize
Status (to
"Awaiting
DAR
Results") | EcPlOdMgr
(ODPRM) | EcMsAcOrd
erSrvr | CCS
Middleware | The status of the On-Demand request is initialized (to "Awaiting DAR Results"). | | | | | O.10.1 | Subscribe | EcPlOdMgr
(ODPRM) | EcSbSubSe
rver | CCS
Middleware | A subscription is placed with the Subscription Server. This process is identical to that documented in the ASTER On-Demand High-Level Production thread. Standing Orders is an extension of High Level production. Refer to Section 3.7.8.3 Steps E.9.1 - E.9.4. | | | | | O.11.1 | Order ID
Returned | EcPlOdMgr
(ODPRM) | EcClOdProd
uctRequest
(ODFRM) | CCS
Middleware | The order ID is returned to the On-
Demand Product Request Form from
the PLS. | | | | | O.12.1 | Order
Confirmation | EcClOdPro
ductReque
st
(ODFRM) | Science
User | GUI | An order confirmation is displayed via the On-Demand Product Request Form to the science user. | | | | | O.13.1 | Insert L1B
(via Ingest) | ASTER
GDS
(Japan) | EcDsScienc
eDataServer | CCS
Middleware | This data has just been received from Japan. | | | | | O.14.1 | Insert Event | EcDsScien
ceDataSer
ver | EcSbSubSe
rver | CCS
Middleware | Upon successful insertion of the DAR output product, the Insert event is triggered. Provided with the event triggering is the UR of the inserted granule. | | | | Table 3.7.18.3-1. Component Interaction Table: ASTER Attached DPRs (Standing Orders) (3 of 3) | | | | <u>Orders</u> | (3 of 3) | | |--------|--|----------------------|-----------------------|--------------------|---| | Step | Event | Interface
Client | Interface
Provider | Interface
Mech. | Description | | O.14.2 | Retrieve
Subscriptions | EcSbSubS
erver | Sybase
ASE | CtLib | The Subscription Server queries the Sybase ASE database determining which subscriptions need to be activated or fired. Each query "hit" is an activated subscription and executes independently. | | O.15.1 | Subscription
Notification | EcSbSubS
erver | EcPlSubM
gr | CCS
Middleware | The subscriptions are submitted for each data type individually. | | O.16.1 | Submit On
Demand
Information | EcPlOdMgr | EcPlOdMgr | CCS
Middleware | The order is processed as a standard On-Demand order. That is, the fourth On Demand Manager thread wakes up and starts processing on-demand information. | | O.17.1 | Update
Status (to
"Awaiting
More DAR
Results") | EcPlOdMgr | EcMsAcOr
derSrvr | CCS
Middleware | Update the order-tracking element (to "Awaiting More DAR Results"). | | O.18.1 | Create MSS
Order
Tracking
Elements | EcPlOdMgr
(ODPRM) | EcMsAcOr
derSrvr | CCS
Middleware | The MSS order tracking elements are created. | | O.19.1 | DAR
Information | EcPlOdMgr | Science
User | E-mail | The user is notified of the DAR ID, expiration time, order ID, and input granule UR. | | O.20.1 | Subscribe | EcPlOdMgr
(ODPRM) | EcSbSubS
erver | CCS
Middleware | A subscription is placed with the Subscription Server. This process is identical to that documented in the ASTER On-Demand High Level Production thread. Standing Orders is an extension of High Level Production. Refer to Section 3.7.8.3, Steps E.9.1 - E.9.4. | | O.21.1 | Create DPR | EcPlOdMgr | EcDpPrJob
Mgmt | CCS
Middleware | The On-Demand Manager sends to the DPS the DPRID and whether the DPR is waiting for external data. | | O.22.1 | Completion
Notice | EcPlOdMgr
(ODPRM) | Science
User | E-mail | Email is sent from On-Demand Production Request Manager (ODPRM) to the user indicating (after all Attached DPRs for this request have completed) that the Attached DPRs request has been satisfied. |